Cell Reports, Volume 44

Supplemental information

Custom affinity probes reveal

DNA-damage-induced, ssDNA-independent

chromatin SUMOylation in budding yeast

Vera Tröster, Ronald P. Wong, Arne Börgel, Baris Cakilkaya, Christian Renz, Martin M. Möckel, Karolin Eifler-Olivi, Joana Marinho, Thomas Reinberg, Sven Furler, Jonas V. Schaefer, Andreas Plückthun, Eva Wolf, and Helle D. Ulrich

Figure S1. Sequences and properties of Smt3-specific DARPins. Related to Figure 1.

(A) Amino acid sequence alignment of DARPins selected against Smt3. An unselected DARPin, E3_5, is shown for comparison. Annotations illustrate secondary structure motifs such as α -helices (α), β -turns (β t) and the capping as well as internal ankyrin repeat (AR) modules with randomized residues. Randomized residues are shown in red; positions randomized with a smaller set of variants according to Binz et al. [S1] are colored in orange, the N-terminal His₈-tag in green and the C-terminal FLAG-tag in blue. Additional residues randomized during the affinity maturation inherent in the ribosome display are shown in purple.

(B) Analytical gel filtration indicates monodisperse behavior of most Smt3-specific DARPins, except for B12, which exhibits a tendency to dimerize. Absorbance units (AU) were recorded at 280 and 230 nm. Std: size standard.

(C) Determination of binding affinities of DARPins for Smt3 by surface plasmon resonance, using biotinylated Smt3 immobilized on a Streptavidin chip. For DARPins A10 and F10, dissociation constants (K_D) were determined by fitting to a 1:1 binding model. Plots show representative examples from a total of three independent measurements. For DARPins C10, E11, and B12, equilibrium K_D values were determined by fitting the steady-state plateau values to a 1:1 binding model. Plots show representative examples from a total of four independent measurements.

(D) Determination of dissociation constants of selected DARPins by surface plasmon resonance, using biotinylated human SUMO1 (hSUMO1) or human SUMO2 (hSUMO2) immobilized on a Streptavidin chip. Equilibrium K_D values were determined by fitting the steady-state plateau values to a 1:1 binding model.

Figure S2. Effects of Smt3-specific DARPins on Smt3 conjugation, deconjugation, and SIM interaction. Related to Figure 2.

(A) Smt3-specific DARPins inhibit the formation of unanchored Smt3 chains to varying degrees. *In vitro* SUMOylation reactions were set up and analyzed as in Figure 2A, but reactions included 50 nM ^{His}Siz1(1-508).

(B) Western blots show the end products of *in vitro* His-CFPGAPtail SUMOylation reactions shown in Figure 2B. Smt3 and the substrate were detected by anti-Smt3 and anti-GFP antibodies, and visualized by means of fluorescent secondary antibodies.

(C) Representative images of Coomassie-stained gels used for E1 thioester formation assays shown in Figure 2C (MW: molecular weight markers). Dashed lines indicate splicing of lanes from the same gel.

(D) Selected Smt3-specific DARPins do not interfere with E2 thioester formation. Reactions containing 500 nM Aos1·Uba2, 750 nM Ubc9 (K153R), 5 μ M Smt3(3R) and a 5-fold molar excess of the indicated DARPins were analyzed in a non-reducing gel-based assay. Quantification was not possible because of overlap between the DARPin signal with free E2 and unconjugated Smt3.

(E) Representative images of Coomassie-stained gels used for Ulp1 activity assays shown in Figure 2D.

(F) Representative image of an anti-RNF4 western blot used for analysis of the interference by DARPins with the interaction between RNF4 and Smt3 (-/+ refers to the presence of Smt3 on the affinity beads).

Figure S3. Structural details of the A10·Smt3 complex. Related to Figure 3.

(A) Alignment of the two A10-Smt3 complexes in the asymmetric unit of the crystal, generated by superposition of the Smt3 structures.

(B) Structural detail of the A10·Smt3 interface reveals a series of charged and polar residues. Potential hydrogen bonds and salt bridges are indicated by dashed lines. Residues involved in SIM binding are colored pink.

(C) Structural detail of the region surrounding R47 at the A10·Smt3 interface.

(D) Determination of association and dissociation rate constants of DARPin A10 by surface plasmon resonance, using biotinylated Smt3 mutants immobilized on a Streptavidin chip. Dissociation constants (K_D) were determined by fitting to a 1:1 binding model. Each plot shows a representative example from a minimum of three independent measurements.

(E) Cartoon model of the A10-Smt3 complex illustrating the position of three acidic residues on Smt3 close to the interface with A10.

(F) Determination of equilibrium dissociation constant of DARPin C10 by surface plasmon resonance, using biotinylated Smt3(11X) mutant immobilized on a Streptavidin chip. The equilibrium K_D value was determined by fitting the steady-state values to a 1:1 binding model. The plot shows a representative example from a total of three independent measurements.

Figure S4. Effects of Smt3-specific DARPins in yeast. Related to Figure 4.

(A) Smt3-specific DARPins localize predominantly to the yeast nucleus. Expression of DARPins was induced for 20 h with 0.5 µg/mL doxycycline. DARPin E3_5^{GFP} served as a non-interacting control and does not exhibit a preferential nuclear localization.

(B) Control blots for panel A showing expression of GFP-tagged DARPins. Ponceau S staining served as loading control.

(C) DARPins F10^{GFP} and E11^{GFP} co-localize with Smt3 under unperturbed conditions. Expression of DARPins was induced as in panel A in strains constitutively expressing ^{mCherry}Smt3.

(D) Control blots for panel C showing expression of mCherrySmt3 and GFP-tagged DARPins. Ponceau S staining served as loading control.

(E) Refolded DARPins immobilized on western blot membranes trap solubilized Smt3, thus generating cross-reactivity towards anti-Smt3 antibody. A standard western blot of a gel loaded with purified DARPins (450 ng each) was incubated with 6.25 μg of purified recombinant ^{His}Smt3 after the blocking step, followed by washing of the membrane and detection with anti-Smt3 antibody.

(F) Smt3-specific DARPins interfere with SUMOylation in a concentration-dependent manner. Expression of A10^{GFP} or E11^{GFP} was induced in exponential cultures by treatment with the indicated concentrations of doxycycline for 20 h, and DARPins as well as free and conjugated Smt3 were detected in total lysates by western blotting. Ponceau S staining served as loading control.

(G) Control blot for Figure 4F showing expression of the indicated DARPinGFP constructs. Ponceau S staining served as loading control.

5µm

Figure S5. Cellular features governing the detection of DNA damage-induced Smt3 foci by DARPin E11. Related to Figure 5.

(A) Interaction of DARPins A11 and E11 with Smt3 is not affected by Smt3's extended N-terminal region. Pull-down assays were performed with the indicated Smt3 variants (WT or Δ N, lacking amino acids 1-19) as in Figure 1B.

(B) MMS-induced Smt3 foci are detected by E11^{GFP}, but their formation does not require the presence of the DARPin. Induction, damage treatment, and fluorescence microscopy were performed as in Figure 5C in strains harboring either ^{mCherry}Smt3 alone or ^{mCherry}Smt3 and E11^{GFP}.

(C) Smt3 foci are induced by a range of DNA-damaging agents. Wildtype (*WT*) and $siz1\Delta siz2\Delta$ mutant cells harboring DARPin E11^{GFP} were treated with the indicated agents and subjected to microscopy as in Figure 5C (0.02% MMS, 0.05 µg/mL 4-NQO or 30 mM HU for 90 min, or 40 J/m² UV irradiation with 90 min recovery). The panel on the bottom left indicates cell cycle profiles of the same cultures obtained by flow cytometry.

(D) Expression of a restriction endonuclease in the yeast nucleus does not induce $E11^{GFP}$ foci. Ascl expression was induced by treatment with 2 μ M β -estradiol for the indicated times before imaging. The panel on the right shows growth assays of the same strains in the presence and absence of 2 μ M β -estradiol (E2) as a control for efficient DSB induction by Ascl.

(E) Proteotoxic stress does not induce E11^{GFP} foci. DARPin E11^{GFP} was expressed in a $pdr5\Delta$ background, and proteasome inhibition was induced by treatment with 50 μ M MG132 for 90 min before imaging. The panels on the bottom show control blots indicating the accumulation of ubiquitin and Smt3 conjugates in total lysates after MG132 treatment. Ponceau S staining served as loading control.

(F) E11^{GFP} foci are associated with chromatin. Foci were detected on chromatin spreads of cells expressing DARPin E11^{GFP} and treated with MMS as in Figure 5C (blue: DAPI; green: GFP). Out of 60 and 27 spreads imaged for E3_5 and E11, GFP foci were detected in 2.5% and 26% of spreads, respectively.

(G) DARPin E11^{GFP} forms MMS-induced foci in cells independently of PCNA SUMOylation. Induction, damage treatment, and fluorescence microscopy were performed as in Figure 5C in a *pol30(K127/164R)* mutant and an isogenic wildtype (*WT*) strain.

(H) DARPin E11^{GFP} forms MMS-induced foci in cells independently of Rfa1 SUMOylation. Induction, damage treatment, and fluorescence microscopy were performed as in Figure 5C in a *rfa1(K170/180/411/427)* mutant and an isogenic wildtype (*WT*) strain.

(I) DARPin E11^{GFP} forms MMS-induced foci in cells independently of the presence or absence of topoisomerase I. Induction, damage treatment, and fluorescence microscopy were performed as in Figure 5C in a $top1\Delta$ mutant and an isogenic wildtype (WT) strain.

(J) DARPin E11^{GFP} forms MMS-induced foci in cells independently of the presence or absence of topoisomerase II. Induction, damage treatment, and fluorescence microscopy were performed as in Figure 5C in a strain harboring an auxin-inducible degron-tagged allele of *TOP2 (TOP2^{A/D*-myc})*. Degradation of Top2 was induced by addition of 1 mM auxin for 30 min prior to MMS treatment. The panel on the right shows control blots of total lysates, probed for the presence of Top2^{A/D*-myc} via an anti-myc antibody. Blotting against α -tubulin served as loading control.

(K) Accumulation of MMS-induced Smt3 foci depends on the catalytic activity of Mms21. Fluorescence images were obtained as in Figure 5C, using a strain expressing harboring a catalytically inactive allele of *MMS21* (*mms21-CH*) and its isogenic wildtype (*WT*).

(L) MMS-induced DARPin E11^{GFP} foci overlap with Mms21. Induction, damage treatment, and fluorescence microscopy were performed as in Figure 5C in a strain expressing E11^{GFP} in a background harboring endogenously tagged Mms21^{mCherry}.

	A10-Smt3(20-98) – PDB: 9G8I	C10-Smt3(20-98) – PDB: 9GAU
Data collection		
Beamline	SLS X06DA	SLS X06SA
Wavelength (Å)	1.00003	0.9999
Resolution range (Å)	47.37–2.51 (2.61–2.51)	47.05-2.64 (2.77–2.64)
Space group	P 21 21 21	C121
a, b, c (Å)	42.97, 94.75, 120.96	90.46, 44.69, 47.60
α, β, γ (°)	90, 90, 90	90, 98.76, 90
Unique reflections	17608 (1948)	5539 (695)
Multiplicity	13.1 (12.8)	5.0 (5.2)
Completeness (%)	99.9 (100)	98.5 (95.8)
Mean I/σ(I)	17.7 (1.7)	6.5 (1.6)
CC 1/2	1.000 (0.897)	0.974 (0.401)
R merge	0.097 (1.496)	0.293 (1.614)
Refinement		
Protein atoms	3417	1506
Water molecules	56	31
R work	0.2413	0.2330
R free	0.3000	0.2883
RMSD bonds (Å)	0.0023	0.0022
RMSD angles (°)	0.6283	0.5891
B-factors overall	76.82	53.27
B-factors	76.91 (A10-Smt3), 70.99 (H ₂ O)	53.38 (C10-Smt3), 47.76 (H ₂ O)
Favored (%)	95.98	96.41
Allowed (%)	4.02	3.08
Outliers (%)	0	0.51

 Table S1. X-ray crystallographic data collection and refinement statistics. Related to Figure 3.

Name	ID	Genotype	Source
DF5 α alpha (WT α)	002	Matα, his3-Δ200, leu2-3,2-112, lys2-801, trp1-1(am), ura3-52	[S2]
DF5a (WT a)	003	Mata, his3-Δ200, leu2-3,2-112, lys2-801, trp1-1(am), ura3-52	[S2]
ubc9 ^{ts}	584	DF5α ubc9::TRP1, leu2-3,2-112::ubc9-1 (LEU2)	[S3]
TetR-SSN6	5144	DF5a Δhis3-200::pRS303-TetR-SpADH-SSN6 (HIS3)	This study
TetR-SSN6 ^{His} POL30 bar1	4984	DF5a hisG::pol30, leu2-3,2-112::Ylp128-P30- ^{His} POL30 (LEU2), bgr1::HISMX6. trp1-1::Ylp204-SpADH-SSN6 (TRP1)	This study
TetR-SSN6 SHS1 ^{mCherry}	5235	DF5a Δhis3-200::pRS303-TetR-SpADH-SSN6 (HIS3), SHS2 ^{mCherry} ::natNT2	This study
TetR-SSN6 ^{His} POL30 bar1 SPC42 ^{mCherry}	5408	DF5a hisG::pol30, leu2-3,2-112::Ylp128-P30- ^{His} POL30 (LEU2), bar1::HISMX6, trp1-1::Ylp204-SpADH-SSN6 (TRP1), SPC42 ^{mCherry} ::natNT2	This study
TetR-SSN6 ^{His} POL30 bar1 KRE28 ^{mCherry}	5412	DF5a hisG::pol30, leu2-3,2-112::Ylp128-P30- ^{His} POL30 (LEU2), bar1::HISMX6, trp1-1::Ylp204-SpADH-SSN6 (TRP1), KRE28 ^{mCherry} ::natNT2	This study
TetR-SSN6 E11 ^{GFP}	5376	DF5a Δhis3-200::pRS303-TetR-SpADH-SSN6 (HIS3), leu2-3,2- 112::Ylp128-TetO7-DARPin-E11-FLAG-GFP (LEU2)	This study
W303 E11 ^{GFP}	5913	W303 fpr1::natMX, RPL13A-2xFKBP12::TRP1, tor1-1::HIS3MX, RAD5, hmlΔ, hmrΔ, ura3-1::YIp211-TetO7-DARPin-E11-FLAG-GFP (URA3)	[S4]
W303 EsON-Ascl E11 ^{GFP}	5914	W303 fpr1::natMX, RPL13A-2xFKBP12::TRP1, tor1-1::HIS3MX, RAD5, hmlΔ, hmrΔ, leu2::P_lexO-AscI-T_CYC1-P_ACT1-LexA-ER- B112-T_CYC1 (LEU2MX), ura3-1::YIp211-TetO7-DARPin-E11-FLAG- GFP (URA3)	[S4]
TetR-SSN6 E11 ^{GFP} siz2	5457	DF5a Δhis3-200::pRS303-TetR-SpADH-SSN6 (HIS3), leu2-3,2- 112::Ylp128-TetO7-DARPin-E11-FLAG-GFP (LEU2), siz2::hphNT1	This study
TetR-SSN6 E11 ^{GFP} siz1	5456	DF5a Δhis3-200::pRS303-TetR-SpADH-SSN6 (HIS3), leu2-3,2- 112::YIp128-TetO7-DARPin-E11-FLAG-GFP (LEU2), siz1::hphNT1	This study
TetR-SSN6 E11 ^{GFP} siz1 siz2	5814	DF5a Δhis3-200::pRS303-TetR-SpADH-SSN6 (HIS3), leu2-3,2- 112::YIp128-TetO7-DARPin-E11-FLAG-GFP (LEU2), siz1::hphNT1, siz2::natNT2	This study
TetR-SSN6 E11 ^{GFP} POL30	5736	DF5a Δhis3-200::pRS303-TetR-SpADH-SSN6 (HIS3), leu2-3,2- 112::Ylp128-TetO7-DARPin-E11-FLAG-GFP (LEU2), ura3-52::Ylp211- P30-POL30 (URA3), pol30::natNT2	This study
TetR-SSN6 E11 ^{GFP} pol30(K164R)	5737	DF5a Δhis3-200::pRS303-TetR-SpADH-SSN6 (HIS3), leu2-3,2- 112::Ylp128-TetO7-DARPin-E11-FLAG-GFP (LEU2), ura3-52::Ylp211- P30-POL30(K127R/K164R) (URA3), pol30::natNT2	This study
TetR-SSN6 E11 ^{GFP} rfa1(4KR)	5740	DF5a Δhis3-200::pRS303-TetR-SpADH-SSN6 (HIS3), leu2-3,2- 112::YIp128-TetO7-DARPin-E11-FLAG-GFP (LEU2), rfa1(4KR)::kanMX	This study
TetR-SSN6 E11 ^{GFP} top1	5775	DF5a Δhis3-200::pRS303-TetR-SpADH-SSN6 (HIS3), leu2-3,2- 112::Ylp128-TetO7-DARPin-E11-FLAG-GFP (LEU2), top1::CaURA3	This study
TetR-SSN6 E11 ^{GFP} pdr5	5910	DF5a Δhis3-200::pRS303-TetR-SpADH-SSN6 (HIS3), leu2-3,2- 112::YIp128-TetO7-DARPin-E11-FLAG-GFP (LEU2), pdr5::NatNT2	This study
TetR-SSN6 E11 ^{GFP} apn1 apn2	5945	DF5a Δhis3-200::pRS303-TetR-SpADH-SSN6 (HIS3), leu2-3,2- 112::YIp128-TetO7-DARPin-E11-FLAG-GFP (LEU2), apn1::natNT2, apn2::hphNT1	This study
TetR-SSN6 E11 ^{GFP} rad51	5931	DF5a Δhis3-200::pRS303-TetR-SpADH-SSN6 (HIS3), leu2-3,2- 112::YIp128-TetO7-DARPin-E11-FLAG-GFP (LEU2), rad51::NatNT2	This study
TetR-SSN6 E11 ^{GFP} mms21-CH	5946	DF5a Δhis3-200::pRS303-TetR-SpADH-SSN6 (HIS3), leu2-3,2- 112::YIp128-TetO7-DARPin-E11-FLAG-GFP (LEU2), mms21- CH::KanMX	This study
TetR-SSN6 E11 ^{GFP} AFB2 ^{FLAG} TOP2-AID*-myc	5783	DF5a Δhis3-200::pRS303-TetR-SpADH-SSN6 (HIS3), leu2-3,2- 112::YIp128-TetO7-DARPin-E11-FLAG-GFP (LEU2), trp1-1::YIp204- ADH-AFB2-FLAG (TRP1), TOP2-AID*-9myc::natNT2	This study
TetR-SSN6 E11 ^{GFP} AFB2 ^{FLAG} MMS21-AID*-myc	5915	DF5a Δhis3-200::pRS303-TetR-SpADH-SSN6 (HIS3), leu2-3,2- 112::YIp128-TetO7-DARPin-E11-FLAG-GFP (LEU2), trp1-1::YIp204- ADH-AFB2-FLAG (TRP1), TOP2-AID*-9myc::natNT2	This study

TetR-SSN6 E11 ^{GFP} RFA1 ^{mRuby2}	5474	DF5a Δhis3-200::pRS303-TetR-SpADH-SSN6 (HIS3), leu2-3,2- 112::YIp128-TetO7-DARPin-E11-FLAG-GFP (LEU2), RFA1- mRuby2::kanMX	This study
TetR-SSN6 E11 ^{GFP} MCM4 ^{mRuby2}	5779	DF5a Δhis3-200::pRS303-TetR-SpADH-SSN6 (HIS3), leu2-3,2- 112::YIp128-TetO7-DARPin-E11-FLAG-GFP (LEU2), MCM4- mRuby2::CaURA3	This study
TetR-SSN6 E11 ^{GFP} ^{mRuby2} POL30	5801	DF5a Δhis3-200::pRS303-TetR-SpADH-SSN6 (HIS3), leu2-3,2- 112::Ylp128-TetO7-DARPin-E11-FLAG-GFP (LEU2), ura3-52::Ylp211- pPOL30-mRuby2-POL30 (URA3)	This study
TetR-SSN6 E11 ^{GFP} CMR1 ^{mCherry}	5800	DF5a Δhis3-200::pRS303-TetR-SpADH-SSN6 (HIS3), leu2-3,2- 112::Ylp128-TetO7-DARPin-E11-FLAG-GFP (LEU2), CMR1- mCherry::natNT2	This study
TetR-SSN6 E11 ^{GFP} NIC96 ^{mCherry}	5811	DF5a Δhis3-200::pRS303-TetR-SpADH-SSN6 (HIS3), leu2-3,2- 112::Ylp128-TetO7-DARPin-E11-FLAG-GFP (LEU2), NIC96- mCherry::natNT2	This study
TetR-SSN6 E11 ^{GFP} MMS21 ^{mCherry}	5932	DF5a Δhis3-200::pRS303-TetR-SpADH-SSN6 (HIS3), leu2-3,2- 112::Ylp128-TetO7-DARPin-E11-FLAG-GFP (LEU2), MMS21- mCherry::hphNT1	This study

Nova		Comunication
Name	טו	Sequence
Cloning & mutagenesis	5	
UBC9-T	/11	
UBC9K-153R-r	/13	
SMT3-(GG-STOP)-r	1329	
SMT3-Ndel-f	1437	GAGGGATCCATATGTCGGACTCAGAAG
SMT3-BamHI-f	1793	CCTGGGATCCAAAATGTCGGACTCAGAAGTC
Kpnl-yeGFP-f	2746	CTCTGCTGGTACCGGATCCGGAGCAGGTGCTGGTG
yeGFP-Sall-NotI-r	2757	AAATATGGCGGCCGCGGTCGACTTATTTGTACAATTCATCCAT
GFP-BamHI-f	3018	GGATGGATCCATGTCTAAAGGTGAAGAATTATTCACTGGTGTTGT
AVI-SMT3-f	4451	ACGATATCTTCGAAGCTCAGAAAATCGAATGGCACGAAATGTCGGACTCAGAAGTC
His-AVI-SMT3-r	4452	ATTCGATTTTCTGAGCTTCGAAGATATCGTTCAGACCACCATGGTGATGATGGTG
SMT3(20-98)-Ndel-r	4851	GCAACATATGCCTGAGACTCACATCAATTTAAAGG
BgIII-2NLS-DARPin-f	4995	GCAAAGATCTGCAAAATGCCCAAGAAAAAGCGTAAGGTCCCCAAGAAAAAGCGTAAGGTCATG GGATCCGACCTGGGTAAGAAAC
Kpnl-DARPin-FLAG-r	4996	GCAAGGTACCGCACTTGTCGTCGTCATCCTTGTAG
BglII-DARPin-f	4997	GCAAAGATCTGCAAATGGGATCCGACCTGGGTAAGAAAC
SMT3-E34A-f	5108	GGTGTCCGATGGATCTTCAGCCATCTTCTTCAAGATCAAAAAGACC
SMT3-E34A-r	5109	GGTCTTTTTGATCTTGAAGAAGATGGCTGAAGATCCATCGGACACC
SMT3-R47A-f	5110	GACCACTCCTTTAAGAGCACTGATGGAAGCGTTCGC
SMT3-R47A-r	5111	GCGAACGCTTCCATCAGTGCTCTTAAAGGAGTGGTC
SMT3-E50A-f	5112	CTCCTTTAAGAAGGCTGATGGCCGCGTTCGCTAAAAGACAGG
SMT3-E50A-r	5113	CCTGTCTTTTAGCGAACGCGGCCATCAGCCTTCTTAAAGGAG
SMT3-E59A-f	5114	CGCTAAAAGACAGGGTAAGGCCATGGACTCCTTAAGATTCTTG
SMT3-E59A-r	5115	CAAGAATCTTAAGGAGTCCATGGCCTTACCCTGTCTTTTAGCG
DARPin-FLAG-GFP-r	5117	CCTGCTCCGGATCCGGTACCCTTAAGCTTGTCGTCGTCATCCTTGTAGTC
SMT3-E59P-f	5410	CGCTAAAAGACAGGGTAAGCCAATGGACTCCTTAAGATTCTTG
SMT3-E59P-r	5411	CAAGAATCTTAAGGAGTCCATTGGCTTACCCTGTCTTTTAGCG
SMT3-F36H-r	5412	GTGGTCTTTTGATCTTGAAGTGGATCTCTGAAGATCCATCGG
SMT3-F36H-f	5413	CCGATGGATCTTCAGAGATCCACTTCAAGATCAAAAAGACCAC
SMT3-R47K-f	5414	GACCACTCCTTTAAGAAAGCTGATGGAAGCGTTCGC
SMT3-R47K-r	5415	GCGAACGCTTCCATCAGCTTTCTTAAAGGAGTGGTC
hsSUMO1-Ndel-f	3872	GATATACATATGTCTGACCAGGAGGC
hsSUMO1-AVI-XhoI-r	3873	GTGGTGCTCGAGTTCGTGCCATTCGATTTTCTGAGCTTCGAAGATATCGTTCAGACCACCCCCC GTTTGTTCCTG
hsSUMO2-NdeI-f	3874	GATATACATATGGCCGACGAAAAGC
hsSUMO2-AVI-XhoI-r	3875	GTGGTGCTCGAGTTCGTGCCATTCGATTTTCTGAGCTTCGAAGATATCGTTCAGACCACCTCCC GTCTGCTGTTG
BamHI-mCherry-f	5432	CGCGGATCCTTAATTAACATGGTGAGCAAGGGCGAGG
Notl-r	5451	ATAGTTTAGCGGCCGC
BgIII-2xNES-EcoRI-	5604	GATCAGATCTGTCATGCTGCCTCCCCTGGAGCGCCTGACCCTGCTGCCTCCCCTGGAGCGCCTG

ACCCTGGATCGAATTCGGATCGGATCCGACCTGGGT

GGAATTCCATATGACGGATCCCTTTGTACAGCTCG

GCGCGGATCCGCGTTTGTACAGCTCGTCCATGCCG

CCTCACTGATTAAGCATTGGTAATTTTTTTAAGGCAGTTATTGGTGC

GCACCAATAACTGCCTTAAAAAAATTACCAATGCTTAATCAGTGAGG

GATCCAGATCTGATCTTGTCGTCGTCATCCTTG

GGAATTCCATATGTCGTACTACCATCACCATC

Table S3	. Oligonucleotides	s used in this study.	Related to STAR	Methods.
----------	--------------------	-----------------------	------------------------	----------

DARPin-f

BglII-FLAG-r

Ndel-3His-f

noSTOP-r

Ndel-mVenus-r

BamHI-mCherrry-

AmpR 3' pBirAcm-f

AmpR 3' pBirAcm-r

5605

5852

5853

5889

cf83

cf82

AmpR 5' pBirAcm-f	cf81	CTTTTGGCGAAAATGAGACGTCGCGGAACCCCTATTTG
AmpR 5´ pBirAcm-r	cf80	CAAATAGGGGTTCCGCGACGTCTCATTTTCGCCAAAAG
lacl pBirAcm-r	cf79	GGCTGTGCAGGTCGTAAATCAC
lacl pBirAcm-f	cf78	GTGATTTACGACCTGCACAGCC
KanR 3' pBirAcm-f	cf77	GATGCTCGATGAGTTTTTCTAATTTTTTTTTTTTTTTTT
KanR 3' pBirAcm-r	cf76	GCACCAATAACTGCCTTAAAAAAATTAGAAAAACTCATCGAGCATC
KanR 5' pBirAcm-f	cf75	CTTTTGGCGAAAATGAGACGTGAACAATAAAACTGTCTGCTTAC
KanR 5' pBirAcm-r	cf74	GTAAGCAGACAGTTTTATTGTTCACGTCTCATTTTCGCCAAAAG
PCR knockout & taggir	ıg	
POL30-knockout-f	481	TCACAGCAACAAGCAGCAAGCACTAAGTACGCAGTCAAAAGAGAGAAAAACGTACGCTGCAG GTCGAC
POL30-knockout-r	367	TTTTTTTTTGTTTATTATTTTAGTATACAACTATATAGATAATTTACATATCGATGAATTCGAGCT CG
TOP1-knockout-f	5701	ACTTGATGCGTGAATGTATTTGCTTCTCCCCTATGCTGCGTTTCTTTGCGATCGAT
TOP1-knockout-r	5700	TAAAAAAAATCTAAAGGGAGGGCAGAGCTCGAAACTTGAAACGCGTAAAACGTACGCTGCAG GTCGAC
SIZ1-knockout-f	453	AAGAAGACTCCAACTCAAACAGTTGAGTGTTCCATATACATTCTGTTTCACGTACGCTGCAGGT CGAC
SIZ1-knockout-r	454	AAATATTTCATGAAAGAGCTGGACGGAACCGTCCAATTTTAGCCTCGTTTATCGATGAATTCGA GCTCG
SIZ2-knockout-f	1022	CCACAAACGATACACTGATAATCAAGAAACGTATAAGGGAAAAGAGCACGCGTACGCTGCAG GTCGAC
SIZ2-knockout-r	1023	AAATAAAAATAGAATACAATCGGAAAGGAAAGAAATCAAAAGACGGTTAAATCGATGAATTC GAGCTCG
PDR5-knockout-f	1556	AAGACCCTTTTAAGTTTTCGTATCCGCTCGTTCGAAAGACTTTAGACAAAACGTACGCTGCAGG TCGAC
PDR5-knockout-r	1557	AAAAAGTCCATCTTGGTAAGTTTCTTTTCTTAACCAAATTCAAAATTCTAATCGATGAATTCGAG CTCG
APN1-knockout-f	3030	GTCGACCTGCAGCGTACGTACGATGGTTCCGATATGCCAAAAGCTTATTAATGTTGCGTTTTGT GTTT
APN1-knockout-r	3031	CGAGCTCGAATTCATCGATTGAGAAGCGAGAAGAATTTTAAATACGTAATCAATTTTTGTAGAT TATCT
APN2-knockout-f	7713	AGAAGCTATTTCACCGTAAAGAAAATCCCTTTCCTTGTCAGGACACTATGCGTACGCTGCAGGT CGAC
APN2-knockout-r	7714	GAAGAAAGTGTTTTATTCTCCCAAAATATCAGCTGACGTTTTCATATTTAATCGATGAATTCGAG CTCG
RAD51-knockout-f	621	AAGAGCAGACGTAGTTATTTGTTAAAGGCCTACTAATTTGTTATCGTCATCGTACGCTGCAGGT CGAC
RAD51-knockout-r	315	TGAAAGTAAACCTGTGTAAATAAATAGAGACAAGAGACCAAATACATCGATGAATTCGAGCTC G
RFA1-tag-r	312	TCTCATATGTTACATAGATTAAATAGTACTTGATTATTTGATACAATCGATGAATTCGAGCTCG
RFA1-mRuby2-tag-f	4261	GAAGCCGACTATCTTGCCGATGAGTTATCCAAGGCTTTGTTAGCTGGTGACGGTGCTGGTTTA
SPC42-tag-f	3019	CACAGAACGCTTTAAGAATGCGCCATACTCCTTAACTGCTTTTTAAATCAATC
SPC42-tag-r	3020	
KRE28-tag-f	3021	
KRE28-tag-r	3022	TGCAAATCTTTGAGGTAATGGATGACATTATAAGCGAGCTAACAAACGAACG
CDC48-tag-f	4673	
CDC48-tag-r	4675	AGAAATGACTIGAATTIACGATTIAAAATAAAAATATACCTGGCATATAAATCGATGAATTCGA GCTCG
SHS1-tag-f	5403	AATGACACGTATACTGATTTAGCCTCTATTGCATCGGGTAGAGATCGTACGCTGCAGGTCGAC
SHS1-tag-r	5404	TTTATTTATTTATTTGCTCAGCTTTGGATTTTGTACAGATACAACATCGATGAATTCGAGCTCG
TOP2-tag-f	7197	ATGATGAAGAGGAAAACCAAGGATCAGATGTTTCGTTCAATGAAGAGGATCGTACGCTGCAG GTCGAC

TOP2-tag-r	7196	TCTGATATAAAAAATAAAAAAAAGAATGGCGCTTTCTCTGGATAAATATTATATCGATGAATTCGA GCTCG
MCM4-mRuby2-tag-f	4998	TTGTCCTTGGCGAGGGTGTAAGGAGATCAGTTCGCCTGAATAACCGTGTCGGTGACGGTGCTG GTTTA
MCM4-tag-r	1803	TAATTAGTATTTATTAATTGTTACGCAGGGAATGATTGTAGTAGACAGCAATCGATGAATTCGA GCTCG
CMR1-tag-f	4323	AAAAAGCTGCCAAGATTGGTGGGTTATTAAAACCTTCCGAACTTGATGATCGTACGCTGCAGGT CGAC
CMR1-tag-r	4322	AATAAAAGGGAAAAAATATTGGAAATTTAAAGAATGATACGCCACCGCCTATCGATGAATTCG AGCTCG
NIC96-tag-f	3831	AGGGAAACGTACAGCACTTTAATTAATATAGACGTCTCTCTACGTACG
NIC96-tag-r	3832	CGCATACTGATATAGATATAAACAAAAATATACAATATTTAAAACATCGATGAATTCGAGCT CG
MMS21-tag-f	7672	AAAGAATCTCAGGAACAGGATAAAAGAAGTAGTCAAGCCATCGATGTTTTACGTACG
MMS21-tag-r	7673	GAACTTCGGGCCGAAGGGCTCGGATAAGAGAAACAATAATTTTGTTTTCAATCGATGAATTCG AGCTCG
MMS21-test-fwd	7674	CCTTTCTACCTGGGATAAATATCGT
MMS21-test-rev	7724	ATTTTTGTAAAAGTTGAGCGAAGTG

Table S4	. Plasmids	used in t	this study	. Related t	o STAR Methods.
		uscu III	uns scaay	. Incluted t	

Name	ID	Use	Source
E. coli expression vectors for production of recombinant	oroteins		
pBluescript SK+	4	PCNA sumoylation assays	Stratagene
pET-UBA2	733	Uba2 ^{His}	[S5]
pET-AOS1	734	HisAos1	[S5]
pET-UBC9	736	Ubc9 ^{His}	[S6]
pET-ubc9(K153R)	1059	Ubc9(K153R) ^{His}	This study
pQE32-SIZ1(1-508)	1539	^{His} Siz1(1-508)	[S7]
pET28-His6-ULP1	2731	^{His} Ulp1(403-621)	[S3]
pLou3-RNF4-wt	3762	His-MBP-TEVRNF4 (rat)	[S8]
pET11a-SMT3(3R)	1640	Smt3(3R) (untagged)	This study
pET21a-His6-cys2-SMT3-eGFP	3545	His-cys ² Smt3-GFP	This study
pET21a-His6-cys2-SMT3	3546	His-cys2Smt3	This study
pET21a-His6-cys2-SMT3 ∆ N	6451	His-cys2Smt3(20-89)	This study
pET3a-SMT3∆N	3942	Smt3(20-98) (untagged)	This study
pET21a-His6-AVI-SMT3	3670	His-AVISmt3 & biotinylated Smt3	This study
pET21a-His6-AVI-SMT3(R47A)	4495	His-AVISmt3(R47A)	This study
pET21a-His6-AVI-SMT3(E34A-E50A-E59A)	4502	His-AVISmt3(3A)	This study
pET21a-His6-AVI-SMT3(F36H-R47K-E59P)	4730	His-AVISmt3(3X)	This study
pET30-His6-AVI-SMT3(I35D-F36D-F37D)	4731	His-AVISmt3(3D)	This study
pET30-His6-AVI-Smt3(H23Y-N25K-F36H-I39V-K41M- R46K-R47K-A51S-K54Q-K58V-E59P)	4914	His-AVISmt3(11X)	This study
pET30-His6-AVI-Smt3(T22A-I35S-F37S-K38E-K40E-T43A- L48S-R55E-N86A)	5059	His-AVISmt3(SIMX)	This study
pET30-His6-AVI-Smt3(K41M-R46K-K54Q-K58V-E59P)	5118	^{His-AVI} Smt3(5X)	This study
pET11a-His6-TEV-YFP-SMT3(3R)	5210	His-TEV-YFPSmt3(3R)	This study
pET30-SUMO1-AVI-His6	3240	hSUMO1 ^{AVI-HIS}	This study
pET30-SUMO2-AVI-His6	3241	hSUMO2 ^{AVI-HIS}	This study
pQE30-POL30	637	HisPCNA	[\$9]
pBL481-RFC	1086	RFC	[S10]
pET30a-His-TEV-ECFP-GAPtail1(RanGAP1)	4876	RanGAP1 tail	[S11]
pBirAcm	3613	BirA (for in vivo biotinylation)	Avidity LLC
pBirA-Amp	4513	BirA (for in vivo biotinylation)	This study
pBirA-Kan	4514	BirA (for in vivo biotinylation)	This study
pQIq-MA-His6-TwinStrep-Smt3	N/A	His-TwinStrepSmt3	This study
pQIq-MRGS-His8-control DARPin E_5-FLAG	3522	HisE3_5 ^{FLAG}	This study
pQIq-MRGS-His8-anti SMT3 DARPin A10-FLAG	3523	^{His} A10 ^{FLAG} (006-698-2025_E5)	This study
pQIq-MRGS-His8-anti SMT3 DARPin B10-FLAG	3524	^{His} B10 ^{FLAG} (006-698-2025_H2)	This study
pQIq-MRGS-His8-anti SMT3 DARPin C10-FLAG	3525	^{His} C10 ^{FLAG} (006-698-2025_B11)	This study
pQIq-MRGS-His8-anti SMT3 DARPin D10-FLAG	3526	^{His} D10 ^{FLAG} (006-698-2025_A7)	This study
pQIq-MRGS-His8-anti SMT3 DARPin E10-FLAG	3527	^{His} E10 ^{FLAG} (006-698-2025_D1)	This study
pQIq-MRGS-His8-anti SMT3 DARPin F10-FLAG	3528	^{His} F10 ^{FLAG} (006-698-2026_G11)	This study
pQIq-MRGS-His8-anti SMT3 DARPin G10-FLAG	3529	^{His} G10 ^{FLAG} (006-698-2026_H4)	This study
pQIq-MRGS-His8-anti SMT3 DARPin H10-FLAG	3530	^{His} H10 ^{FLAG} (006-698-2026_D3)	This study
pQlq-MRGS-His8-anti SMT3 DARPin A11-FLAG	3531	^{His} A11 ^{FLAG} (006-698-2026_F8)	This study
pQlq-MRGS-His8-anti SMT3 DARPin B11-FLAG	3532	^{His} B11 ^{FLAG} (006-698-2026_C10)	This study
pQlq-MRGS-His8-anti SMT3 DARPin C11-FLAG	3533	^{His} C11 ^{FLAG} (006-698-2026_B12)	This study
pQIq-MRGS-His8-anti SMT3 DARPin D11-FLAG	3534	^{His} D11 ^{FLAG} (006-698-2027_C1)	This study

pQIq-MRGS-His8-anti SMT3 DARPin E11-FLAG	3535	^{His} E11 ^{FLAG} (006-698-2027_D7)	This study
pQIq-MRGS-His8-anti SMT3 DARPin F11-FLAG	3536	^{His} F11 ^{FLAG} (006-698-2027_E7)	This study
pQIq-MRGS-His8-anti SMT3 DARPin G11-FLAG	3537	HisG11 ^{FLAG} (006-698-2027_D12)	This study
pQIq-MRGS-His8-anti SMT3 DARPin H11-FLAG	3538	^{His} H11 ^{FLAG} (006-698-2027_G2)	This study
pQIq-MRGS-His8-anti SMT3 DARPin A12-FLAG	3539	HisA12 ^{FLAG} (006-698-2028_A11)	This study
pQIq-MRGS-His8-anti SMT3 DARPin B12-FLAG	3540	HisB12 ^{FLAG} (006-698-2028_F12)	This study
pQIq-MRGS-His8-anti SMT3 DARPin C12-FLAG	3541	^{His} C12 ^{FLAG} (006-698-2028_H5)	This study
pQIq-MRS-His6-GCCG-antiSMT3-DARPin-A10	3673	HisA10 without FLAG-tag	This study
pQIq-MRS-His6-GCCG-antiSMT3-DARPin-C10	3674	HisC10 without FLAG-tag	This study
pQIq-MRS-His6-GCCG-antiSMT3-DARPin-E10	3675	HisE10 without FLAG-tag	This study
pQIq-MRS-His6-GCCG-antiSMT3-DARPin-F10	3676	HisF10 without FLAG-tag	This study
pQIq-MRS-His6-GCCG-antiSMT3-DARPin-E11	3677	HisE11 without FLAG-tag	This study
pQIq-MRS-His6-GCCG-antiSMT3-DARPin-G11	3678	HisG11 without FLAG-tag	This study
pQIq-MRS-His6-GCCG-antiSMT3-DARPin-B12	3679	HisB12 without FLAG-tag	This study
Yeast expression vectors			
YIp211-P30-POL30	1389	PCNA	[S12]
YIp211-P30-POL30(K127R/K164R)	718	PCNA(K127R/K164R)	[S12]
Ylp128-P30-His-POL30	732	HisPCNA	[S12]
pCM252	1375	tTA' vector (Tet-regulated expression)	[S13]
pRS303-SpADH-TetR-SSN6	2393	TetR-SSN6 (Tet-regulated expression)	This study
YIp204-SpADH-TetR-SSN6	4631	TetR-SSN6 (Tet-regulated expression)	This study
Ylp211-TetO7-GFP	4486	Tet-inducible yeGFP	This study
YEp195-CUP1-mCherry-His-SMT3	5237	^{mCherry-His} Smt3	This study
YIp211-TetO7-DARPinF10-FLAG-GFP	4479	Tet-inducible F10 ^{FLAG-GFP}	This study
YIp211-TetO7-DARPinA10-FLAG-GFP	4480	Tet-inducible A10 ^{FLAG-GFP}	This study
Ylp211-TetO7-DARPinC10-FLAG-GFP	4481	Tet-inducible C10 ^{FLAG-GFP}	This study
YIp211-TetO7-DARPinE11-FLAG-GFP	4482	Tet-inducible E11 ^{FLAG-GFP}	This study
YIp211-TetO7-DARPinG11-FLAG-GFP	4483	Tet-inducible G11 ^{FLAG-GFP}	This study
YIp211-TetO7-DARPinB12-FLAG-GFP	4484	Tet-inducible B12 ^{FLAG-GFP}	This study
YIp211-TetO7-DARPinE3_5-FLAG-GFP	4485	Tet-inducible E3_5 ^{FLAG-GFP}	This study
YIp211-TetO7-2xNES-DARPin-E3.5-FLAG-GFP	4965	Tet-inducible NESE3_5FLAG-GFP	This study
YIp211-TetO7-2xNES-DARPin-F10-FLAG-GFP	4966	Tet-inducible NESF10FLAG-GFP	This study
YIp211-TetO7-2xNES-DARPin-E11-FLAG-GFP	4967	Tet-inducible NESE11FLAG-GFP	This study
YIp211-TetO7-2xNLS-DARPin-E11-FLAG-GFP	4968	Tet-inducible NLSE11FLAG-GFP	This study
YIp211-TetO7-2xNLS-DARPin-F10-FLAG-GFP	4969	Tet-inducible NLSF10FLAG-GFP	This study
YIp211-TetO7-2xNLS-DARPin-E3.5-FLAG-GFP	4970	Tet-inducible NLSE3_5FLAG-GFP	This study
YIp128-TetO7-DARPin-E11-FLAG-GFP	5119	Tet-inducible E11 ^{FLAG-GFP}	This study
YIp128-TetO7-DARPin-F10-FLAG-GFP	5120	Tet-inducible F10 ^{FLAG-GFP}	This study
YIp128-TetO7-DARPin-E3_5-FLAG-GFP	5121	Tet-inducible E3_5 ^{FLAG-GFP}	This study
YIp204-PADH-AFB2-FLAG	5198	AFB2-FLAG	This study
YIp211-P30-mRuby2-POL30	6229	^{mRuby2} PCNA	This study
Yeast tagging & deletion constructs			
pFA6a-natNT2	1633	Deletion cassette	[S14]
pFA6a-hphNT1	1634	Deletion cassette	[S14]
pNat-AID*-9myc	2189	Auxin-inducible degron cassette	[S15]
pFA6a-link-yomRuby2-CaUra3	2402	mRuby2 (C-terminal tagging)	[S16]
pYM-mCherry-natNT2	2622	mCherry (C-terminal tagging)	This study
pFA6a-CaURA3	4761	Deletion cassette	This study
pRS416-RFA1(4KR)-KanMX	pXZ623	Introduction of RFA1(4KR)	[S17]

Supplemental References

- Binz, H.K., Stumpp, M.T., Forrer, P., Amstutz, P., and Plückthun, A. (2003). Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J Mol Biol *332*, 489-503. 10.1016/s0022-2836(03)00896-9.
- S2. Finley, D., Ozkaynak, E., and Varshavsky, A. (1987). The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell *48*, 1035-1046. 10.1016/0092-8674(87)90711-2.
- Seufert, W., Futcher, B., and Jentsch, S. (1995). Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 373, 78-81. 10.1038/373078a0.
- S4. Gnugge, R., and Symington, L.S. (2020). Efficient DNA double-strand break formation at single or multiple defined sites in the *Saccharomyces cerevisiae* genome. Nucleic Acids Res *48*, e115. 10.1093/nar/gkaa833.
- Johnson, E.S., Schwienhorst, I., Dohmen, R.J., and Blobel, G. (1997). The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J 16, 5509-5519. 10.1093/emboj/16.18.5509.
- S6. Johnson, E.S., and Blobel, G. (1997). Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem 272, 26799-26802. 10.1074/jbc.272.43.26799.
- Parker, J.L., and Ulrich, H.D. (2012). In vitro PCNA modification assays. Methods Mol Biol 920, 569-589. 10.1007/978-1-61779-998-3_37.
- Branigan, E., Plechanovova, A., Jaffray, E.G., Naismith, J.H., and Hay, R.T. (2015). Structural basis for the RING-catalyzed synthesis of K63-linked ubiquitin chains. Nat Struct Mol Biol 22, 597-602. 10.1038/nsmb.3052.
- Windecker, H., and Ulrich, H.D. (2008). Architecture and assembly of poly-SUMO chains on PCNA in Saccharomyces cerevisiae. J Mol Biol 376, 221-231. 10.1016/j.jmb.2007.12.008.
- S10. Franco, A.A., Lam, W.M., Burgers, P.M., and Kaufman, P.D. (2005). Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C. Genes Dev 19, 1365-1375. 10.1101/gad.1305005.
- S11. Tatham, M.H., and Hay, R.T. (2009). FRET-based in vitro assays for the analysis of SUMO protease activities. Methods Mol Biol 497, 253-268. 10.1007/978-1-59745-566-4_17.
- Stelter, P., and Ulrich, H.D. (2003). Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188-191. 10.1038/nature01965.
- S13. Belli, G., Gari, E., Piedrafita, L., Aldea, M., and Herrero, E. (1998). An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast. Nucleic Acids Res 26, 942-947. 10.1093/nar/26.4.942.
- S14. Janke, C., Magiera, M.M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., Moreno-Borchart, A., Doenges, G., Schwob, E., Schiebel, E., and Knop, M. (2004). A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947-962. 10.1002/yea.1142.
- S15. Morawska, M., and Ulrich, H.D. (2013). An expanded tool kit for the auxin-inducible degron system in budding yeast. Yeast *30*, 341-351. 10.1002/yea.2967.
- S16. Lee, S., Lim, W.A., and Thorn, K.S. (2013). Improved blue, green, and red fluorescent protein tagging vectors for *S. cerevisiae*. PLoS One *8*, e67902. 10.1371/journal.pone.0067902.
- S17. Dhingra, N., Wei, L., and Zhao, X. (2019). Replication protein A (RPA) sumoylation positively influences the DNA damage checkpoint response in yeast. J Biol Chem 294, 2690-2699. 10.1074/jbc.RA118.006006.