Supporting Information

Identification of a novel subtype-selective α_{1B}-adrenoceptor antagonist

Alaa Abdul-Ridha¹, Lazarus A. de Zhang¹, Ashenafi Haileyesus Betrie¹, Mattia Deluigi², Tasneem M. Vaid^{1,5,6}, Alice Whitehead¹, Yifan Zhang¹, Ben Davis³, Richard Harris³, Heather Simmonite³, Roderick E. Hubbard^{3,4}, Paul R. Gooley^{5, 6}, Andreas Plückthun², Ross A.D. Bathgate^{1,5}, David K. Chalmers⁷, & Daniel J. Scott^{1,5}

¹The Florey Institute, 30 Royal Parade, The University of Melbourne, Parkville, Victoria 3052, Australia

² Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland

³ Vernalis (R&D) Ltd, Granta Park, Cambridge, CB21 6GB, UK

⁴ Department of Chemistry, University of York, York YO10 5DD, UK

⁵ The Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia

⁶ The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia

⁷ Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia

Supporting Figure 1. STD NMR and competition STD NMR of Cpd1 on purified α_{1A} -AR and α_{1B} -AR. STD NMR spectra of Cpd1 (500 µM) binding to purified α_{1A} -AR-A4 (A) and α_{1B} -AR-B1 (B). Epinephrine competition STD NMR was performed on α_{1A} -AR-A4 (C) and α_{1B} -AR-B1 (D) with black spectra epinephrine alone (500 µM) and blue spectra corresponding to epinephrine in the presence of Cpd1. Clear competition of epinephrine binding to α_{1B} -AR-B1 by Cpd1 (100 µM) was observed, which was not the case with α_{1A} -AR-A4, even with 6-fold more Cpd1 added (600 µM).

Supporting Figure 2. α_{1B}-AR selectivity of Cpd1 in CRE reporter assay and rat α₁-ARs.

(A) Cpd1 inhibits phenylephrine (PhE)-induced CRE activation in COS-7 cells stably expressing human α_{1B} -AR (blue circles) to a greater extent than at human α_{1A} -AR (red circles) at 37°C. (B) The equilibrium binding of the antagonist QAPB was inhibited by Cpd1 at WT rat α_{1B} -AR (blue circle) but not at WT rat α_{1A} -AR (red circle) in COS-7 cells transiently expressing receptors at 21°C. (C) Cpd1 inhibits PhE-induced Ca²⁺ mobilisation response in rat α_{1B} -AR (blue circles) to a greater extent than in rat α_{1A} -AR (red circles) transiently expressed in COS-7 cells. Cells were pre-incubated with Cpd1 for 30 minutes before addition of an EC₅₀ concentration of PhE at 37°C. Points represent the mean ± S.E. of three independent experiments performed in duplicate. Refer to Table 1 for values.

Supporting Figure 3. Screening of Cpd1 at α₂-ARs and β-ARs.

(A) Clonidine induces activation of the $G\alpha_{i3}$ G protein subunit upon binding to α_{2A} -AR (closed red circles), α_{2B} -AR (closed blue circles), and α_{2C} -AR (closed green circles). At 500 μ M, Cpd1 weakly competes with clonidine agonist activity at α_{2B} -AR (open blue circles), but not at α_{2A} -AR (open red circles) or α_{2C} -AR (open green circles). (B) Isoprenaline induces activation of the $G\alpha_s$ G protein subunit upon binding to β_1 -AR (closed red circles), β_2 -AR (closed blue circles), and β_3 -AR (closed green circles). At 500 μ M, Cpd1 does not compete with isoprenaline at β_1 -AR (open red circles), β_2 -AR (open blue circles) or β_3 -AR (open green circles). COS-7 cells transiently expressing each receptor and BRET sensor pair were pre-incubated with Cpd1 for 30 minutes before addition of either clonidine or isoprenaline at 37°C and measurement of a BRET signal for 1 h. The area under each BRET curve was used to generate a dose-response curve. Points represent the mean \pm S.E. of three independent experiments performed in duplicate.

Supporting Figure 4. (+)-Cyclazosin docking and MD simulations studies on α_{1A} -AR and α_{1B} -AR.

(A) The chemical structure of (+)-cyclazosin. (B) RMSD of (+)-cyclazosin from MD simulations run on the α_{1A} -AR (blue line) and α_{1B} -AR (red line) WT homology models, revealing that (+)-cyclazosin remained stably bound in both receptors during the 400 ns simulation. (C-D) Docking of (+)-cyclazosin into the homology models of WT α_{1A} -AR (C) and α_{1B} -AR (D) made using the α_{1B} -AR crystal structure (PDB: 7B6W) as a template.

Supporting Figure 5. Phenylephrine dose-response curves.

(A & B) Phenylephrine (PhE) dose-response curves generated using the intracellular Ca²⁺ mobilisation assay to test the effects of each of the α_{1A} -AR mutants (I178V, M292L, and I178V/M292L) (A) and α_{1B} -AR mutants (V197I, L314M, and V197I/L314M) (B) on agonist potency and efficacy relative to their respective WT receptor. The EC₅₀ values derived from these curves were used in subsequent Ca²⁺ mobilisations assay testing Cpd1 (Figure 3 C–D). Assays in (A & B) were conducted using COS-7 cells transiently expressing WT or mutant receptors at 37°C. Points represent the mean \pm S.E. of at least three independent experiments performed in duplicate. Refer to Table 1 for values.

	B _{max}	pK _D ^a	pKı ^b			pEC ₅₀ ^c	pIC ₅₀ ^d		
		QAPB	Prazosin	Cpd1	Cpd24	Phenylephrine	Prazosin	Cpd1	Cpd24
	225559 + 45(79	0.00 + 0.00	9.27 + 0.09	2 28 + 0.42	(22 + 0.00	8.20 + 0.21	9.54 + 0.10	2 22 + 0 41	5.24 + 0.21
α1Α-ΑΚ W Ι	235558 ± 45678	8.08 ± 0.08	8.27±0.08	3.38 ± 0.43	6.33 ± 0.06	8.20 ± 0.21	8.54 ± 0.19	3.23 ± 0.41 $3.41 \pm 0.07 (CRE)$	5.24 ± 0.31
α _{1A} -AR I178V	513647 ± 21507*	8.04 ± 0.02	8.32 ± 0.05	ND	6.29 ± 0.05	$6.95 \pm 0.14*$	$7.86 \pm 0.10*$	3.48 ± 0.25	5.34 ± 0.27
α _{1A} -AR M292L	537979 ± 15184*	8.14 ± 0.06	$8.75 \pm 0.08*$	ND	$5.64\pm0.09\texttt{*}$	8.24 ± 0.21	8.47 ± 0.14	3.16 ± 0.38	4.96 ± 0.27
α _{1A} -AR I178V & M292L	424599 ± 22546*	8.22 ± 0.08	$8.64 \pm 0.07*$	ND	5.96 ± 0.13	7.99 ± 0.09	8.50 ± 0.16	3.49 ± 0.18	5.79 ± 0.39
a1B-AR WT	97400 ± 15422	8.40 ± 0.09	8.85 ± 0.05	4.76 ± 0.11	6.81 ± 0.14	8.27 ± 0.17	8.92 ± 0.13	$\begin{array}{c} 4.43 \pm 0.11 \\ 4.25 \pm 0.01 \; (\text{CRE}) \end{array}$	5.54 ± 0.28
α _{1B} -AR V197I	324676 ± 15993*	8.15 ± 0.16	8.95 ± 0.05	$3.74 \pm 0.36*$	$5.34 \pm 0.14*$	8.28 ± 0.16	8.86 ± 0.17	3.52 ± 0.35	4.88 ± 0.39
α _{1B} -AR L314M	273130 ± 16360*	$7.75 \pm 0.20*$	9.01 ± 0.08	3.96 ± 0.24	6.24 ± 0.12	$7.13 \pm 0.13*$	8.77 ± 0.30	3.09 ± 0.44	5.53 ± 0.34
α _{1B} -AR V197I & L314M	315513 ± 23388*	7.90 ± 0.18	9.03 ± 0.06	3.53 ± 0.35*	5.18 ± 0.35*	8.19 ± 0.22	8.77 ± 0.09	2.73 ± 0.74	5.22 ± 0.28
Rat a _{1A} -AR WT	587371 ± 166603	7.80 ± 0.44	ND	ND	ND	7.62 ± 0.37	ND	2.74 ± 0.68	ND
Rat α _{1B} -AR WT	1366189 ± 129077	7.54 ± 0.61	ND	4.20 ± 0.21	ND	8.05 ± 0.30	ND	3.75 ± 0.15	ND
ald-AR WT	ND	ND	ND	ND	ND	7.76 ± 0.19	ND	ND	ND
Δ 1-79 α _{1D} -AR	ND	9.29 ± 0.63	ND	ND	ND	8.08 ± 0.21	ND	ND	ND

Table 1. Pharmacological characterization for QAPB, Prazosin, Phenylephrine, Cpd1, and Cpd24 at WT and mutant α_1 -ARs. Estimated values represent the mean \pm S.E. of at least three experiments performed in duplicate.

* Data are statistically different (P<0.05) from WT values as determined by one way analysis of variance (ANOVA) with Dunnett's post hoc test.

^a Negative logarithm of the equilibrium dissociation constant for QAPB derived from whole-cell saturation binding assays.

^bNegative logarithm of the equilibrium constant for each ligand derived from competition binding assays against QAPB (Figures 3 and 4).

^{*c*} Negative logarithm of the EC₅₀ of phenylephrine (Supplementary Figure 5).

^d Negative logarithm of the IC₅₀ for each ligand derived from Ca²⁺ mobilisation assays (Figures 3 C–D) or CRE reporter assays as indicated (Supplementary Figure 2A).

Table 2. Inhibition of QAPB binding and effects on Ca^{2+} mobilisation of structural analogues of Cpd1 at α_1 -ARs. Estimated values represent the mean \pm S.E. of three experiments performed in duplicate.

Compound ID	Structure		B binding ^a	% Phenyleph	rine inhibition ^b	% Agonis	t activity ^c
		ana	α _{1B}	α1Α	α_{1B}	α_{1A}	α_{1B}
Phentolamine	H ₁ C OH						
	•	0.08±2.97*	$0.12{\pm}0.07*$	2.88±0.67**	1.80±0.67**	0.95±0.99	0.51±0.10
Phenylephrine	HO HH H CH3	11 00+6 22*	1.06±0.52*	105 90+4 29	105 54+7 70	79 24+1 90•	68 80+2 37 .
Cpd1	H ₃ C NH	84 01+3 57*	37 59+1 57*	103.7014.27	105.54±7.70	79.24±1.90*	08.89±2.37*
		(3.38 ± 0.43)	(4.76 ± 0.07)	99.11±4.46	36.19±6.30**	1.52±0.43	2.68±0.46
Cpd14	H ₃ C N N	67.47±2.68* (2.79 + 0.30)	$42.83\pm 3.85^{*}$ (4.08 ± 0.118)	91 77+4 36	74 74+3 03	18 48+3 28•	11 44+6 33
Cpd19	H ₃ C CH ₃ N	25.23±1.94*	(4.08 ± 0.11§)	91.//±4.30	/4./4±3.03	10.40±3.28•	11.44±0.55

^a Values are relative to QAPB (6.25 nM) total binding in the absence of other ligands. 1 mM phenylephrine, 1 μ M phentolamine, 500 μ M all compounds. pK_I values in parentheses.

^b Data normalised to the response elicited by EC₅₀ concentration of phenylephrine (10 nM at α_{1A} -AR and α_{1B} -AR). Cells are pre-incubated with either vehicle or 100 μ M of phentolamine or test compounds before addition of phenylephrine.

^c Data is normalised to response elicited by 3 µM ionomycin. Phenylephrine is tested at 1 µM and all compounds are 500 µM.

Data are significantly different from: $Cpd1 pK_I$ value or * total QAPB binding value in the absence of other ligands or ** response elicited by phenylephrine EC₅₀ or • vehicle treated cells (p<0.05) as determined by one way ANOVA with Dunnett's post hoc test. ND indicates value not determined. ^indicates effects due to higher concentration of DMSO in this sample relative to the rest of the compounds tested (see Table S2).

Cpd5	NH O						
	но сна						
Cpd6	HOHO	78.37±8.17	73.90±8.75	89.10±8.76	79.88±10.67	13.16±1.16	9.72±0.88
	H₃C	78.10±4.48	79.06±19.93	81.78±5.08	68.82±5.94	4.37±2.04	2.80±1.52
Cpd7	H ₃ C N						
	52	87.42±11.42	84.88±14.80	99.43±3.78	61.11±8.64**	6.32±3.54	6.47±1.56
Cpd8	NH NH						
G. 10		86.41±17.92	78.89±12.82	91.34±6.54	72.04±2.45	4.44±2.84	4.37±2.06
Cpd9	H ₀ C-0-V-NH						
		88.76±0.38	98.88±8.63	93.03±6.81	83.19±16.68	20.96±3.86•^	32.99±15.08•^

S13

Cpd16	H ₃ C +						
		89.65±5.91	78.72±9.69	95.53±8.30	99.63±9.59	4.90±1.05	2.65±1.09
Cpd17	H ₂ C						
	NNN						
		53.08±10.74*	64.15±8.28	104.18±4.63	65.07±3.74**	13.86±6.44^	18.61±8.26^
Cpd18	H ₃ C + CH ₃						
	N	68.71±14.28	95.46±11.05	90.53±12.38	73.03±8.75	2.20±0.81	4.03±2.07
Cpd21	CTTC [°] C						
		57.31±5.66*	68.22±9.08	89.61±5.47	44.56±8.34**	21.67±8.24•	19.85±2.78•
Cpd22							
	NH NH						
		79.56±2.93	94.57±8.78	88.14±9.52	87.44±14.13	0.50±0.11	0.31±0.63

^a Values are relative to total [³H]-prazosin binding in the absence of other ligands. All compounds are 500 µM.

^b Data normalised to the response elicited by EC_{50} concentration of phenylephrine (10 nM at α_{1A} -AR and α_{1B} -AR). Cells are pre-incubated with either vehicle or 100 μ M of phentolamine or test compounds before addition of phenylephrine.

^c Data is normalised to response elicited by 3 µM ionomycin. Phenylephrine is tested at 1 µM and all compounds are 500 µM.

Data are significantly different from: * total [3 H]-prazosin binding in the absence of other ligands or ** response elicited by phenylephrine EC₅₀ or • vehicle treated cells (p<0.05) as determined by one way ANOVA with Dunnett's post hoc test. ND indicates value not determined.^ indicates these compounds also produced response in untransfected COS-7 cells (see table S2).

Table 4. Ca^{2+} mobilisation signal in response to addition of 500 μ M of test compounds or vehicle in untransfected COS-7 cells. Estimated values represent the mean \pm S.E. of three experiments performed in duplicate. Signal is relative to vehicle treatment and 3 μ M Ionomycin. * Indicates value is significantly different from vehicle treated cells (p<0.05) as determined by one way ANOVA with Dunnett's post hoc test. ND indicates value not determined.

Compound	Ca ²⁺ mobilisation signal				
Vehicle	1.62±1.56				
Phenylephrine	2.06±0.54				
Cpd 1	3.15±1.93				
Cpd2	1.95±1.03				
Cpd3	0.94±0.35				
Cpd4	0.05±0.95				
Cpd5	2.09±0.62				
Cpd6	0.87±1.22				
Cpd7	2.44±1.39				
Cpd8	2.46±0.63				
Cpd9	10.80±2.07*				
Cpd10	2.70±2.21				
Cpd11	Nd				
Cpd12	11.17±2.41*				
Cpd13	2.59±1.02				

Cpd14	3.65±3.32
Cpd15	0.44±0.65
Cpd16	6.76±1.70
Cpd17	13.50±2.58*
Cpd18	0.91±1.89
Cpd19	1.09±2.05
Cpd20	0.54±0.64
Cpd21	2.82±1.66
Cpd22	1.66±1.06
Cpd23	1.90±0.76
Cpd24	14.08±0.15*