Supporting Information

Identification of a novel subtype-selective α_{18}-adrenoceptor antagonist

Alaa Abdul-Ridha ${ }^{1}$, Lazarus A. de Zhang 1, Ashenafi Haileyesus Betrie 1, Mattia Deluigi ${ }^{2}$, Tasneem M. Vaid 1,5,6, Alice Whitehead ${ }^{1}$, Yifan Zhang ${ }^{1}$, Ben Davis ${ }^{3}$, Richard Harris ${ }^{3}$, Heather Simmonite ${ }^{3}$, Roderick E. Hubbard ${ }^{3,4}$, Paul R. Gooley ${ }^{5,6}$, Andreas Plückthun ${ }^{2}$, Ross A.D. Bathgate ${ }^{1,5}$, David K. Chalmers ${ }^{7}$, \& Daniel J. Scott ${ }^{1,5}$
${ }^{1}$ The Florey Institute, 30 Royal Parade, The University of Melbourne, Parkville, Victoria 3052, Australia
${ }^{2}$ Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
${ }^{3}$ Vernalis (R\&D) Ltd, Granta Park, Cambridge, CB21 6GB, UK
${ }^{4}$ Department of Chemistry, University of York, York YO10 5DD, UK
${ }^{5}$ The Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
${ }^{6}$ The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
${ }^{7}$ Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia

Supporting Figure 1. STD NMR and competition STD NMR of Cpd1 on purified $\boldsymbol{\alpha}_{1 \mathrm{~A}}$-AR and $\boldsymbol{\alpha}_{1 \mathrm{~B}}{ }^{-}$ AR. STD NMR spectra of Cpd1 ($500 \mu \mathrm{M}$) binding to purified $\alpha_{1 A}$-AR-A4 (A) and $\alpha_{1 B}$-AR-B1 (B). Epinephrine competition STD NMR was performed on $\alpha_{1 A}-A R-A 4(C)$ and $\alpha_{1 B}-A R-B 1$ (D) with black spectra epinephrine alone $(500 \mu \mathrm{M})$ and blue spectra corresponding to epinephrine in the presence of Cpd1. Clear competition of epinephrine binding to $\alpha_{1 \mathrm{~B}}-\mathrm{AR}-\mathrm{B} 1$ by $\operatorname{Cpd} 1(100 \mu \mathrm{M})$ was observed, which was not the case with $\alpha_{1 A}-A R-A 4$, even with 6 -fold more Cpd1 added ($600 \mu \mathrm{M}$).

Supporting Figure 2. $\alpha_{1 \mathrm{~B}}$-AR selectivity of Cpd1 in CRE reporter assay and rat α_{1}-ARs.
(A) Cpd1 inhibits phenylephrine (PhE)-induced CRE activation in COS-7 cells stably expressing human $\alpha_{1 \mathrm{~B}}-\mathrm{AR}$ (blue circles) to a greater extent than at human $\alpha_{1 \mathrm{~A}}-\mathrm{AR}$ (red circles) at $37^{\circ} \mathrm{C}$. (B) The equilibrium binding of the antagonist QAPB was inhibited by Cpd1 at WT rat $\alpha_{1 \mathrm{~B}}-\mathrm{AR}$ (blue circle) but not at WT rat $\alpha_{1 \mathrm{~A}}-\mathrm{AR}$ (red circle) in COS-7 cells transiently expressing receptors at $21^{\circ} \mathrm{C}$. (C) Cpd 1 inhibits PhE -induced Ca^{2+} mobilisation response in rat $\alpha_{1 \mathrm{~B}}-\mathrm{AR}$ (blue circles) to a greater extent than in rat $\alpha_{1 \mathrm{~A}}-\mathrm{AR}$ (red circles) transiently expressed in COS-7 cells. Cells were pre-incubated with Cpd1 for 30 minutes before addition of an EC_{50} concentration of PhE at $37^{\circ} \mathrm{C}$. Points represent the mean \pm S.E. of three independent experiments performed in duplicate. Refer to Table 1 for values.

Supporting Figure 3. Screening of Cpd1 at α_{2}-ARs and $\boldsymbol{\beta}$-ARs.

(A) Clonidine induces activation of the $\mathrm{G} \alpha_{\mathrm{i3}} \mathrm{G}$ protein subunit upon binding to $\alpha_{2 \mathrm{~A}}-\mathrm{AR}$ (closed red circles), $\alpha_{2 B}-A R$ (closed blue circles), and $\alpha_{2 c}-A R$ (closed green circles). At $500 \mu \mathrm{M}, \mathrm{Cpd} 1$ weakly competes with clonidine agonist activity at $\alpha_{2 B}$-AR (open blue circles), but not at $\alpha_{2 A}-A R$ (open red circles) or $\alpha_{2 C}-A R$ (open green circles). (B) Isoprenaline induces activation of the $\mathrm{G} \alpha_{\mathrm{s}} \mathrm{G}$ protein subunit upon binding to $\beta_{1-}{ }^{-}$ AR (closed red circles), $\beta_{2}-\mathrm{AR}$ (closed blue circles), and β_{3}-AR (closed green circles). At $500 \mu \mathrm{M}, \mathrm{Cpd} 1$ does not compete with isoprenaline at β_{1}-AR (open red circles), β_{2}-AR (open blue circles) or β_{3}-AR (open green circles). COS-7 cells transiently expressing each receptor and BRET sensor pair were pre-incubated with Cpd1 for 30 minutes before addition of either clonidine or isoprenaline at $37^{\circ} \mathrm{C}$ and measurement of a BRET signal for 1 h . The area under each BRET curve was used to generate a dose-response curve. Points represent the mean \pm S.E. of three independent experiments performed in duplicate.

A

B

Supporting Figure 4. (+)-Cyclazosin docking and MD simulations studies on $\alpha_{1 A}-A R$ and $\alpha_{1 B}-A R$.
(A) The chemical structure of $(+)$-cyclazosin. (B) RMSD of $(+)$-cyclazosin from MD simulations run on the $\alpha_{1 \mathrm{~A}}-\mathrm{AR}$ (blue line) and $\alpha_{18}-\mathrm{AR}$ (red line) WT homology models, revealing that (+)-cyclazosin remained stably bound in both receptors during the 400 ns simulation. (C-D) Docking of $(+$)-cyclazosin into the homology models of WT $\alpha_{1 \mathrm{~A}}-\mathrm{AR}(\mathrm{C})$ and $\alpha_{1 \mathrm{~B}}-\mathrm{AR}$ (D) made using the $\alpha_{1 \mathrm{~B}}-\mathrm{AR}$ crystal structure (PDB: 7B6W) as a template.

Supporting Figure 5. Phenylephrine dose-response curves.

$(\mathrm{A} \& B)$ Phenylephrine (PhE) dose-response curves generated using the intracellular Ca^{2+} mobilisation assay to test the effects of each of the $\alpha_{1 \mathrm{~A}}$-AR mutants (I178V, M292L, and I178V/M292L) (A) and $\alpha_{1 \mathrm{~B}}{ }^{-}$ AR mutants (V197I, L314M, and V197I/L314M) (B) on agonist potency and efficacy relative to their respective WT receptor. The EC_{50} values derived from these curves were used in subsequent Ca^{2+} mobilisations assay testing Cpd1 (Figure 3 C-D). Assays in (A \& B) were conducted using COS-7 cells transiently expressing WT or mutant receptors at $37^{\circ} \mathrm{C}$. Points represent the mean \pm S.E. of at least three independent experiments performed in duplicate. Refer to Table 1 for values.

Table 1. Pharmacological characterization for QAPB, Prazosin, Phenylephrine, Cpd1, and Cpd24 at WT and mutant $\boldsymbol{\alpha}_{1}$-ARs. Estimated values represent the mean \pm S.E. of at least three experiments performed in duplicate.

	$\mathbf{B}_{\text {max }}$	$\mathbf{p K}{ }^{\text {d }}{ }^{\text {a }}$	$\mathbf{p K}{ }_{\mathbf{I}}{ }^{\text {b }}$			pEC50 ${ }^{\text {c }}$	$\mathbf{p I C}_{50}{ }^{\text {d }}$		
		QAPB	Prazosin	Cpd1	Cpd24	Phenylephrine	Prazosin	Cpd1	Cpd24
$\alpha_{14}-$ AR WT	235558 ± 45678	8.08 ± 0.08	8.27 ± 0.08	3.38 ± 0.43	6.33 ± 0.06	8.20 ± 0.21	8.54 ± 0.19	$\begin{gathered} 3.23 \pm 0.41 \\ 3.41 \pm 0.07(\mathrm{CRE}) \end{gathered}$	5.24 ± 0.31
$\begin{aligned} & \alpha_{1 \mathrm{~A}}-\mathrm{AR} \\ & \mathrm{I} 78 \mathrm{~V} \\ & \hline \end{aligned}$	$513647 \pm 21507 *$	8.04 ± 0.02	8.32 ± 0.05	ND	6.29 ± 0.05	$6.95 \pm 0.14 *$	$7.86 \pm 0.10^{*}$	3.48 ± 0.25	5.34 ± 0.27
$\begin{aligned} & \hline \boldsymbol{\alpha}_{1 \mathrm{~A}-\mathrm{AR}} \\ & \mathrm{M} 292 \mathrm{~L} \\ & \hline \end{aligned}$	$537979 \pm 15184 *$	8.14 ± 0.06	$8.75 \pm 0.08^{*}$	ND	$5.64 \pm 0.09^{*}$	8.24 ± 0.21	8.47 ± 0.14	3.16 ± 0.38	4.96 ± 0.27
$\begin{aligned} & \alpha_{1 \mathrm{~A}}-\mathrm{AR} \\ & \text { I178V \& } \\ & \text { M292L } \end{aligned}$	$424599 \pm 22546 *$	8.22 ± 0.08	$8.64 \pm 0.07^{*}$	ND	5.96 ± 0.13	7.99 ± 0.09	8.50 ± 0.16	3.49 ± 0.18	5.79 ± 0.39
$\alpha_{1 B-A R ~ W T ~}^{\text {d }}$	97400 ± 15422	8.40 ± 0.09	8.85 ± 0.05	4.76 ± 0.11	6.81 ± 0.14	8.27 ± 0.17	8.92 ± 0.13	$\begin{gathered} 4.43 \pm 0.11 \\ 4.25 \pm 0.01(\mathrm{CRE}) \end{gathered}$	5.54 ± 0.28
$\begin{aligned} & \hline \alpha_{1 B}-A R \\ & \text { V197I } \end{aligned}$	$324676 \pm 15993 *$	8.15 ± 0.16	8.95 ± 0.05	$3.74 \pm 0.36^{*}$	$5.34 \pm 0.14 *$	8.28 ± 0.16	8.86 ± 0.17	3.52 ± 0.35	4.88 ± 0.39
$\begin{aligned} & \alpha_{1 B}-\mathrm{AR} \\ & \mathrm{~L} 314 \mathrm{M} \\ & \hline \end{aligned}$	$273130 \pm 16360 *$	7.75 ± 0.20 *	9.01 ± 0.08	3.96 ± 0.24	6.24 ± 0.12	$7.13 \pm 0.13 *$	8.77 ± 0.30	3.09 ± 0.44	5.53 ± 0.34
$\begin{aligned} & \alpha_{1 \mathrm{~B}} \text {-AR } \\ & \text { V197I \& } \\ & \text { L314M } \end{aligned}$	$315513 \pm 23388^{*}$	7.90 ± 0.18	9.03 ± 0.06	$3.53 \pm 0.35^{*}$	$5.18 \pm 0.35 *$	8.19 ± 0.22	8.77 ± 0.09	2.73 ± 0.74	5.22 ± 0.28
$\begin{aligned} & \text { Rat } \alpha_{1 \mathrm{~A}}-\mathrm{AR} \\ & \text { WT } \end{aligned}$	587371 ± 166603	7.80 ± 0.44	ND	ND	ND	7.62 ± 0.37	ND	2.74 ± 0.68	ND
$\begin{aligned} & \text { Rat } \alpha_{1 B} \text {-AR } \\ & \text { WT } \end{aligned}$	$\begin{gathered} 1366189 \pm \\ 129077 \\ \hline \end{gathered}$	7.54 ± 0.61	ND	4.20 ± 0.21	ND	8.05 ± 0.30	ND	3.75 ± 0.15	ND
$\alpha_{10}-A R$ WT	ND	ND	ND	ND	ND	7.76 ± 0.19	ND	ND	ND
$\begin{aligned} & \Delta 1-79 \\ & \alpha_{10}-A R \\ & \hline \end{aligned}$	ND	9.29 ± 0.63	ND	ND	ND	8.08 ± 0.21	ND	ND	ND

* Data are statistically different $(\mathrm{P}<0.05)$ from WT values as determined by one way analysis of variance (ANOVA) with Dunnett's post hoc test.
${ }^{a}$ Negative logarithm of the equilibrium dissociation constant for QAPB derived from whole-cell saturation binding assays.
${ }^{b}$ Negative logarithm of the equilibrium constant for each ligand derived from competition binding assays against QAPB (Figures 3 and 4).
${ }^{c}$ Negative logarithm of the EC_{50} of phenylephrine (Supplementary Figure 5).
${ }^{d}$ Negative logarithm of the IC_{50} for each ligand derived from Ca^{2+} mobilisation assays (Figures $3 \mathrm{C}-\mathrm{D}$) or CRE reporter assays as indicated (Supplementary Figure 2A).

Table 2. Inhibition of QAPB binding and effects on $\mathbf{C a}^{2+}$ mobilisation of structural analogues of Cpd1 at $\boldsymbol{\alpha}_{1}$-ARs. Estimated values represent the mean \pm S.E. of three experiments performed in duplicate.

Cpd20	$\begin{gathered} 37.59 \pm 4.97^{*} \\ (3.79 \pm 0.11) \\ \hline \end{gathered}$	$\begin{aligned} & 20.01 \pm 0.37^{*} \\ & (4.45 \pm 0.04) \\ & \hline \end{aligned}$	$70.08 \pm 8.22^{* *}$	$52.74 \pm 12.72^{* *}$	1.69 ± 0.30	1.47 ± 1.18
Cpd23	$\begin{gathered} 79.79 \pm 9.23 * \\ (\mathrm{ND}) \end{gathered}$	$\begin{gathered} 74.18 \pm 6.38^{*} \\ (4.15 \pm 0.20 \S) \end{gathered}$	94.67 ± 3.91	86.20 ± 12.29	0.44 ± 0.19	0.85 ± 0.86
Cpd24	$\begin{gathered} 1.53 \pm 0.53^{*} \\ (6.33 \pm 0.06 \S) \\ \hline \end{gathered}$	$\begin{gathered} 1.63 \pm 0.67 * \\ (6.81 \pm 0.14 \S) \\ \hline \end{gathered}$	$2.98 \pm 0.87^{* *}$	$1.98 \pm 1.15^{* *}$	$15.72 \pm 4.90^{\bullet} \wedge$	$19.37 \pm 8.65 \cdot \wedge$

${ }^{\text {a }}$ Values are relative to QAPB $(6.25 \mathrm{nM})$ total binding in the absence of other ligands. 1 mM phenylephrine, $1 \mu \mathrm{M}$ phentolamine, $500 \mu \mathrm{M}$ all compounds. pK values in parentheses.
${ }^{\mathrm{b}}$ Data normalised to the response elicited by EC_{50} concentration of phenylephrine (10 nM at $\alpha_{1 \mathrm{~A}}-\mathrm{AR}$ and $\alpha_{1 \mathrm{~B}}-\mathrm{AR}$). Cells are pre-incubated with either vehicle or $100 \mu \mathrm{M}$ of phentolamine or test compounds before addition of phenylephrine.
${ }^{c}$ Data is normalised to response elicited by $3 \mu \mathrm{M}$ ionomycin. Phenylephrine is tested at $1 \mu \mathrm{M}$ and all compounds are $500 \mu \mathrm{M}$.
Data are significantly different from: § Cpd1 pK_{I} value or * total QAPB binding value in the absence of other ligands or ** response elicited by phenylephrine EC_{50} or \cdot vehicle treated cells ($\mathrm{p}<0.05$) as determined by one way ANOVA with Dunnett's post hoc test. ND indicates value not determined. ^indicates effects due to higher concentration of DMSO in this sample relative to the rest of the compounds tested (see Table S2).

Table 3. Inhibition of $\left[{ }^{3} \mathbf{H}\right]$-prazosin binding and effects on $\mathbf{C a}^{\mathbf{2 +}}$ mobilisation of structural analogues of $\mathbf{C p d 1}$ at $\boldsymbol{\alpha}_{1}$-ARs. Estimated values represent the mean \pm S.E. of at least three experiments performed in duplicate.

Structure	$\begin{gathered} \% \\ \left.{ }^{[3} \mathrm{H}\right]- \text { prazosin } \\ \end{gathered}$		\% Phenylephrine inhibition ${ }^{\text {b }}$		\% Agonist activity	
	$\boldsymbol{\alpha}_{1 \mathrm{~A}}$	$\boldsymbol{\alpha}_{1 B}$	$\boldsymbol{\alpha}_{1}{ }_{\text {A }}$	$\boldsymbol{\alpha}_{1 B}$	$\boldsymbol{\alpha}_{1}{ }_{\text {A }}$	$\boldsymbol{\alpha}_{1 B}$
Cpd2	83.29 ± 3.98	85.60 ± 11.76	98.18 ± 4.58	85.54 ± 4.57	8.97 ± 2.04	5.40 ± 1.22
Cpd3	74.80 ± 7.49	78.43 ± 13.09	87.97 ± 7.24	78.08 ± 14.34	1.18 ± 0.42	1.14 ± 0.45
Cpd4	88.97 ± 0.23	89.59 ± 14.89	76.69 ± 9.64	76.67 ± 11.46	3.74 ± 0.35	3.65 ± 0.12

Cpd5	78.37 ± 8.17	73.90 ± 8.75	89.10 ± 8.76	79.88 ± 10.67	13.16 ± 1.16	9.72 ± 0.88
Cpd6	78.10 ± 4.48	79.06 ± 19.93	81.78 ± 5.08	68.82 ± 5.94	4.37 ± 2.04	2.80 ± 1.52
Cpd7	87.42 ± 11.42	84.88 ± 14.80	99.43 ± 3.78	61.11 $\pm 8.64 * *$	6.32 ± 3.54	6.47 ± 1.56
Cpd8	86.41 ± 17.92	78.89 ± 12.82	91.34 ± 6.54	72.04 ± 2.45	4.44 ± 2.84	4.37 ± 2.06
Cpd9	88.76 ± 0.38	98.88 ± 8.63	93.03 ± 6.81	83.19 ± 16.68	$20.96 \pm 3.86 \bullet \wedge$	$32.99 \pm 15.08 \bullet \wedge$

Cpd10	88.51 ± 3.49	91.60 ± 17.93	70.19 $\pm 10.90^{* *}$	40.47 $\pm 13.16^{* *}$	7.39 ± 4.17	9.49 ± 3.76
Cpd11	88.64 ± 0.46	69.10 ± 3.17	70.50 ± 7.92 **	51.29 $\pm 9.45 * *$	6.24 ± 2.13	9.48 ± 6.63
Cpd12	54.67土9.34*	77.27 ± 6.56	77.98 ± 9.35	$60.01 \pm 5.57 * *$	$18.14 \pm 2.35{ }^{\bullet} \wedge$	$16.29 \pm 2.13^{\wedge}$
Cpd13	93.58 ± 4.38	83.02 ± 11.61	102.42 ± 7.87	89.76 ± 22.00	29.19 ± 2.07 •	14.06 ± 2.29
Cpd15	99.99 ± 6.33	91.02 ± 9.97	88.04 ± 11.32	88.17 ± 7.26	7.31 ± 0.74	0.16 ± 0.31

Cpd16	89.65 ± 5.91	78.72 ± 9.69	95.53 ± 8.30	99.63 ± 9.59	4.90 ± 1.05	2.65 ± 1.09
Cpd17	53.08 $\pm 10.74 *$	64.15 ± 8.28	104.18 ± 4.63	65.07 ${ }^{\text {a }}$.74**	$13.86 \pm 6.44^{\wedge}$	$18.61 \pm 8.26^{\wedge}$
Cpd18	68.71 ± 14.28	95.46 ± 11.05	90.53 ± 12.38	73.03 ± 8.75	2.20 ± 0.81	4.03 ± 2.07
Cpd21	57.31 ± 5.66 *	68.22 ± 9.08	89.61 ± 5.47	44.56 $\pm 8.34^{* *}$	$21.67 \pm 8.24 \bullet$	19.85 ± 2.78 •
Cpd22	79.56 ± 2.93	94.57 ± 8.78	88.14 ± 9.52	87.44 ± 14.13	0.50 ± 0.11	0.31 ± 0.63

${ }^{\text {a }}$ Values are relative to total $\left[{ }^{3} \mathrm{H}\right]$-prazosin binding in the absence of other ligands. All compounds are $500 \mu \mathrm{M}$.
${ }^{\mathrm{b}}$ Data normalised to the response elicited by EC_{50} concentration of phenylephrine (10 nM at $\alpha_{1 \mathrm{~A}}-\mathrm{AR}$ and $\alpha_{1 \mathrm{~B}}-\mathrm{AR}$). Cells are pre-incubated with either vehicle or $100 \mu \mathrm{M}$ of phentolamine or test compounds before addition of phenylephrine.
${ }^{\text {c }}$ Data is normalised to response elicited by $3 \mu \mathrm{M}$ ionomycin. Phenylephrine is tested at $1 \mu \mathrm{M}$ and all compounds are $500 \mu \mathrm{M}$.
Data are significantly different from: * total [$\left.{ }^{3} \mathrm{H}\right]$-prazosin binding in the absence of other ligands or ** response elicited by phenylephrine EC_{50} or \bullet vehicle treated cells ($\mathbf{p}<0.05$) as determined by one way ANOVA with Dunnett's post hoc test. ND indicates value not determined. ${ }^{\wedge}$ indicates these compounds also produced response in untransfected COS-7 cells (see table S2).

Table 4. $\mathbf{C a}^{2+}$ mobilisation signal in response to addition of $500 \boldsymbol{\mu}$ M of test compounds or vehicle in untransfected COS-7 cells. Estimated values represent the mean \pm S.E. of three experiments performed in duplicate. Signal is relative to vehicle treatment and $3 \mu \mathrm{M}$ Ionomycin. * Indicates value is significantly different from vehicle treated cells ($\mathrm{p}<0.05$) as determined by one way ANOVA with Dunnett's post hoc test. ND indicates value not determined.

Compound	Ca $^{2+}$ mobilisation signal
Vehicle	1.62 ± 1.56
Phenylephrine	2.06 ± 0.54
Cpd 1	3.15 ± 1.93
Cpd2	1.95 ± 1.03
Cpd3	0.94 ± 0.35
Cpd4	0.05 ± 0.95
Cpd5	2.09 ± 0.62
Cpd6	0.87 ± 1.22
Cpd7	2.44 ± 1.39
Cpd8	2.46 ± 0.63
Cpd9	$10.80 \pm 2.7^{*}$
Cpd10	2.70 ± 2.21
Cpd11	Nd
Cpd12	$11.17 \pm 2.41^{*}$
Cpd13	2.59 ± 1.02

Cpd14	3.65 ± 3.32
Cpd15	0.44 ± 0.65
Cpd16	6.76 ± 1.70
Cpd17	$13.50 \pm 2.58^{*}$
Cpd18	0.91 ± 1.89
Cpd19	0.09 ± 2.05
Cpd20	2.82 ± 1.66
Cpd21	1.66 ± 1.06
Cpd22	1.90 ± 0.76
Cpd23	$14.08 \pm 0.15^{*}$
Cpd24	

