## Targeted shock-and-kill HIV-1 gene therapy approach combining CRISPR activation, suicide gene tBid and retargeted adenovirus delivery

Sarah Klinnert<sup>1,2,3</sup>, Corinne D. Schenkel<sup>1,2</sup>, Patrick C. Freitag<sup>3,4</sup>, Huldrych F. Günthard<sup>1,2</sup>, Andreas Plückthun<sup>4</sup>, and Karin J.Metzner<sup>1,2,\*</sup>

## **Supplementary Material**

| _                   |                                       |
|---------------------|---------------------------------------|
| Primer name         | Sequence (5'-3')                      |
| gRNA-Con fw         | CACCATGTACACTCGGCGCAAAGT              |
| gRNA-Con rev        | AAACACTTTGCG CCGAGTGTACATC            |
| dCasVPR_U6gRNA_fw   | GCTTGACCGACAATTCGGTACCGAGGGCCTATTTCCC |
|                     | ATGATTCC                              |
| U6gRNA_dCas9VPR_rev | ATTCTTCATGCAATTGGAAAAAAAGCACCGACTCG   |
| PS1_CRISPRa_fw      | ATAGCGCGTAATACTGGAGGGCCTATTTCCCATGATT |
|                     | CC                                    |
| PS1_CRISPRa_rev     | ACTCGAGGCG                            |
|                     | GCCGCGGAAGCGGCCTTAGTTATTCAGCG         |
| GibA_tBid-PS1_fw    | TACTCATAGCGCGTAATACTGGTACCAGTTCTACTTA |
|                     | CACCAGGAAAGG                          |
| GibA_tBid-PS1_rev   | TCTAGACTCGAGGCGGCCGCGGTACTCACTGCAACC  |
|                     | TCTACCTC                              |
| InFusion_polyA_fw   | CTAGAGCGGCCTCGAAATAAAAGATCTTTATTTTCAT |
|                     | TAGATCTGTG                            |
| InFusion_polyA_rev  | TATCTCTAGACTCGACTCTAGACACACAAAAAACCA  |
|                     | ACAC                                  |
| GibsAss_iRFP670_fwd | CCGAACAGGGACTTGAAAGCGAAAGGCGGCCGCAT   |
|                     | GGCC AGAAAGGTGGAC                     |
| GibsAss_iRFP670_rev | CCGCGCGCTTCAGCAAGCCGAGTCCCGATCGT      |
|                     | CATCATCTCTGGTGGTGAG                   |

Table S1: Oligonucleotides (Microsynth, Switzerland)



Supplementary figure S1: Adenovirus transduction with CD3-retargeting adapters of various CD3-expressing T cell lines. (a) Jurkat cells, (b) J-Lat 6.3 cells and (c) J-Lat 10.6 cells

were stained with a CD3 antibody (CD3 (HIT3a clone)-APC, Biolegend 300312) for 30 min at 4°C to determine CD3 expression levels. Prior to and after staining, cells were washed twice with PBS and measured by flow cytometry. Ad transduction was assessed by transducing  $1\times10^5$  cells with  $1\times10^3$ ,  $2\times10^3$  or  $4\times10^3$  VP/cell of CD3-retargeted Ad-FG-iRFP. Ad coating was performed by preincubating Ads with CD3-retargeting adapters in a 50-fold molar excess over adenovirus fiber knob for 1.5 h on ice before addition to cells. Flow cytometry was performed at 48 h post-transduction measuring iRFP expression to asses Ad transduction efficiency and is shown as iRFP+cells [%] ±SD, n=2.



Supplementary figure S2: Effect of CD3-retargeting on Ad transduction efficiency.  $1 \times 10^5$  Jurkat cells were transduced with  $4 \times 10^3$  or  $8 \times 10^3$  VP/cell of CD3-retargeted or non-retargeted Ad-TdTomato. Ad coating was performed by preincubating Ads with CD3-retargeting adapters in a 50-fold molar excess over adenovirus fiber knob for 1.5 h on ice before addition to cells. Ad transduction efficiency was measured by flow cytometry 48 h post-transduction. Shown is the fold change of Ad transduction efficiency over untreated cells as TdTomato+ cells (fold change) ±SD with n=2.



Supplementary figure S3: HIV-1 specific killing by Ad-tBid in latently infected J-Lat 10.6 cells.  $1 \times 10^5$  J-Lat 10.6 cells were transduced with  $4 \times 10^3$  VP/cell of retargeting adapter-coated Ad-iRFP, Ad-tBid or Ad-FG-iRFP. Ad coating was performed by preincubating Ads with CD3-retargeting adapters in a 50-fold molar excess over adenovirus fiber knob for 1.5 h on ice before addition to cells. HIV-1 latency reversal was achieved by adding TNF- $\alpha$  [10 ng/ml] 24 h post transduction. 48 h post-transduction cells were stained with the dead cell zombie dye and HIV-1 latency reversal as well as suicide construct transgene activation (iRFP or tBid) and cell death were measured by flow cytometry. (a) Shown is the Ad transduction efficiency ±SD with the Ad-FG-iRFP reporter virus as iRFP+ cells with n=2 from independent experiments, as well as an exemplary flow cytometry plot of HIV-1 latency reversal and cell death of the same sample. \*P<0.033 and \*\*P<0.002 indicate statistical significance between two samples by paired, two-tailed t-test.(b) No leaky expression of the iRFP transgene is observed shown as HIV-1/GFP negative iRFP+ single-positive cells [%] ±SD with n=3. Black bars (Untreated, TNF-  $\alpha$ ) show non-infected cells. Data shown from three independent experiments.



**Supplementary figure S4: Targeted shock and kill with CD3-retargeted Ads in latently infected J-Lat 10.6 cells.** 1x10<sup>5</sup> J-Lat 10.6 cells were co-transduced with a total of 8x10<sup>3</sup> VP/cell with two different retargeted Ads at the same time, either Ad-tBid or Ad-iRFP and Ad-CRISPRa-V or Ad-CRISPRa-Con. Ad coating was performed by preincubating Ads with CD3-

retargeting adapters in a 50-fold molar excess over adenovirus fiber knob for 1.5 h on ice before addition to cells. HIV-1 latency reversal in the CRISPRa-Con and Cell controls was achieved by adding TNF- $\alpha$  [10 ng/ml] 24 h post transduction. At 48 h post-transduction cells were stained with the dead cell zombie dye and measured by flow cytometry. (a) Shown are simultaneous HIV-1 latency reversal and iRFP transgene activation as HIV-1+/GFP+ iRFP+ double-positive cells [%] ±SD with n=3 from three independent experiments.(b) Exemplary flow cytometry plots of HIV-1+/GFP+ iRFP+ double-positive cells in Ad-CRISPRa-V and Ad-iRFP co-transduced cells. (c) No leaky expression of the iRFP transgene is observed shown as HIV-1/GFP negative iRFP+ single-positive cells [%] ±SD with n=3 from three independent experiments. (d) Single Ad-CRISPRa-V transduced cells observed as HIV-1/GFP+ single positive cells [%] ±SD with n=3 from three independent experiments. Black bars (Untreated, TNF- $\alpha$ ) show non-infected cells.



Supplementary figure S5: Ad-CRISPRa-V in combination with Ad-tBid or Ad-iRFP does not activate the expression of iRFP and tBid from the suicide vector.  $1\times10^5$  Jurkat cells were co-transduced with a total of  $8\times10^3$  VP/cell with CD3-retargeted Ad-CRISPRa-V and either Ad-tBid or Ad-iRFP. Ad-FG-iRFP control was transduced with a total of  $4\times10^3$  VP/cell. Ad coating was performed by preincubating Ads with CD3-retargeting adapters in a 50-fold molar excess over adenovirus fiber knob for 1.5 h on ice before addition to cells. HIV-1 latency reversal in the CRISPRa-Con and Cell controls was achieved by adding TNF- $\alpha$  [10 ng/ml] 24 h post transduction. At 48 h post-transduction cells were stained with the dead cell zombie dye and measured by flow cytometry. (a) Shown are iRFP transgene expression as iRFP+ cells [%] and cell death as dead cells [%] in co-transduced cells, ±SD with n=3 as well as exemplary flow cytometry plots. (b) Flow cytometry plots of Ad-FG-iRFP transduction control showing cell death and Ad transduced cell population as iRFP+ cells.