

Total protein groups Enriched protein groups

Supplementary Fig. 1 Identification of novel Myosin VI interactors

a, GST-pulldown assay using GST or GST-MyUb as bait and SILAC-labeled cellular lysates as prey. Samples were separated via SDS-PAGE and proteins were stained using a Colloidal Blue staining kit.

b, Left: Bar plot showing the number of significantly enriched protein groups in the pulldown using GST-MyUb followed by LC-MS/MS (fold change > 2, FDR < 0.05). Right: Number of replicates in which the enriched proteins were quantified.

c, Validation of novel interactors. HEK293T cells were transfected with GFP fusion constructs of the indicated proteins for 24 h. Immunoprecipitations (IPs) against GFP using GFP-trap beads (Chromotek) were performed, followed by western blotting with antibodies against myosin VI and GFP. Ponceau S staining was performed to control for equal loading. For panels **a** and **c**: Results were confirmed by at least two independent experiments. Uncropped blots are shown at the end of this file.

Supplementary Fig. 2 Knockdown efficiencies in fiber assay experiments shown in Fig. 2

a,**c**,**d**,**e**,**g**, Western blots to monitor knockdown efficiencies and expression levels for the fiber assays shown in **Fig. 2**. U2OS cells were transfected with the indicated siRNAs for 72 h or with the indicated overexpression constructs for 48 h, followed by western blotting using the indicated antibodies. Ponceau S staining was performed to control for equal loading. Panel **a** relates to Fig. **2a**, panel **c** relates to Fig. **2b**, panel **d** relates to Fig. **2c**, panel **e** relates to Fig. **2d**, panel **g** relates to Fig. **2e**.

b, Depletion of myosin VI does not induce ATR activation. U2OS cells were transfected with the indicated siRNAs for 72 h and treated with 4 mM HU for 1 h as indicated, followed by western blotting using the indicated antibodies. Ponceau S staining was performed to control for equal loading.

f, Schematic representation of the respective GFP-tail mutants according to Fig. 1a used in panel g.

For panels **a-e** and **g**: Results were confirmed by at least three independent experiments. Uncropped blots are shown at the end of this file.

Supplementary Fig. 3 Nuclear actin and myosin VI levels upon HU treatment

a-c, Confocal microscopy shows an increase in nuclear F-actin upon HU-induced replication stress. U2OS cells were treated for 5 h with 4 mM HU where indicated, followed by staining with Hoechst and Alexa Fluor 647 Phalloidin. A central plane (dashed line) was chosen for quantification of nuclear F-actin (**a**), scale bar 50 μ m. Example images are shown in panel **b**, scale bar 25 μ m. Relative nuclear intensities from the phalloidin channel were quantified from the indicated number of cells using Image J and plotted with mean values -/+ 95% confidence intervals. Significance levels in panel **c** were calculated using the two-tailed Mann-Whitney test (****: p<0.0001).

d-f, Confocal microscopy shows no difference in nuclear myosin VI levels upon HU-induced replication stress. Note that the detection of endogenous nuclear myosin VI via confocal microscopy was not possible with the available antibodies. Instead, we visualized ectopically expressed myosin VI. U2OS cells were transfected with GFP-Myo6 for 24 h and treated for 5 h with 4 mM HU where indicated, followed by staining with Hoechst. A central plane (dashed line) was chosen for quantification of nuclear GFP-Myo6 (d), scale bar 50 µm. Example

images are shown in panel **e**, scale bar 25 μ m. Relative nuclear intensities from the GFP channel (488 nm) were quantified from the indicated number of cells using Image J and plotted with mean values -/+ 95% confidence intervals. Significance levels in panel **f** were calculated using the two-tailed Mann-Whitney test (ns: non-significant).

g, Western blots to monitor knockdown efficiencies for the fiber assay shown in Fig. **3h**. U2OS cells were transfected with the indicated siRNAs for 72 h, followed by western blotting using the indicated antibodies. Ponceau S staining was performed to control for equal loading. Uncropped blots are shown at the end of this file. For panels **a**-**g**: Results were confirmed by at least three independent experiments.

Supplementary Fig. 4 Selection and characterization of the myosin VI-specific DARPin M6G4

a, HTRF screening of bacterial crude extracts of expressed DARPin clones. 380 single DARPin clones encoded in the expression plasmid pQIq were picked from agar selection plates and expression was induced in four 96-well deep well plates (plate 1 to 4). After detergent lysis using B-PER (Pierce), HTRF was performed to detect binding of the FLAG-tagged DARPins to the biotinylated target myosin VI isoform 1. The ratio of readings at 665 nm divided by reading at 620 nm multiplied by 10,000 reflects the degree of specific binding. x-axis: position of the well of the 96 well expression plate.

b, DARPin screening via GST-pulldown assay. GST-pulldown assay using GST or GST-MyUb (labeled GST-M6) as bait and purified DARPin candidates as prey. Proteins were separated via SDS-PAGE and stained using Instant Blue.

c, M6G4 is a pan-isoform-specific binder. GST-pulldown assay was performed using GST or the indicated GST-MIUMyUb isoforms as bait and purified His-M6G4 as prey. Proteins were separated via SDS-PAGE and stained using Instant Blue.

d, DARPin M6G4 depletes myosin VI from cellular lysates. HeLa cells were transfected with the indicated GFP-tagged DARPins for 24 h. Immunoprecipitations (IPs) against GFP using GFP-trap beads (Chromotek) were performed, followed by western blotting with antibodies against myosin VI and GFP.

e, M6G4 binds the MIUMyUb domains with a KD of 60 nM. Surface Plasmon Resonance measurements were performed on a Biacore X100 instrument. Mean values and standard deviation (SD) from four experiments are listed below a graph showing one representative assay.

f, M6G4 does not compete with WRNIP1- and ubiquitin-binding to myosin VI. HEK293 cells were transfected with GFP-tagged DARPin constructs as indicated for 24 h. Cells were lysed and GST-pulldown assays were performed

using GST or GST-MIUMyUb as bait. Proteins were separated via SDS-PAGE and analyzed by western blotting using the indicated antibodies. Ponceau S staining was performed to control for equal loading. For panels **b-f:** Results were confirmed by at least two independent experiments. Uncropped blots are shown at the end of this file.

Supplementary Fig. 5 Establishment of DARPin-based tools and dominant-negative constructs to study contributions of cytoplasmic versus nuclear pools of myosin VI

a, Schematic representation of the DARPin-based myosin VI-degradation system adapted from Ibrahim et al.¹. **b**,**c**, A U2OS FIp-In T-REx single cell clone harboring DOX-inducible GFP-M6G4-2RING fusion construct (2R#8) was treated with increasing concentrations of DOX for 24 h (**b**) or with 20 ng/ml DOX for the indicated times (**c**), followed by western blotting using antibodies against myosin VI and GFP. Ponceau S staining was performed to control for equal loading.

d, The M6G5-2RING fusion targets endogenous myosin VI for proteasomal degradation. A U2OS Flp-In T-REx single-cell clone harboring a DOX-inducible GFP-M6G4-2RING fusion construct (2R#8) was treated with 2 μ g/ml DOX for 24 h and 5 μ M proteasome inhibitor MG-132 as indicated. Cellular lysates were analyzed via western blotting using antibodies against myosin VI and ubiquitin. Ponceau S staining was used to compare loading between samples.

e,**f**,**h**, Western blots to monitor knockdown efficiencies and expression levels for the fiber assays shown in Fig. **4**. Panel **e** relates to **Fig. 4c**: U2OS Flp-In T-REx cells harboring DOX-inducible GFP-M6G4-2RING fusion construct (2R#8) were transfected with siRNAs for 72 h and treated with DOX for 24 h as indicated, followed by western blotting using antibodies against myosin VI and GFP. Panel **f** relates to **Fig. 4e**: U2OS Flp-In T-REx cells harboring DOX-inducible GFP-M6G4-2RING fusion construct swere transfected with siRNAs against myosin VI and GFP. Panel **f** relates to **Fig. 4e**: U2OS Flp-In T-REx cells harboring DOX-inducible GFP-M6G4-NLS or GFP-E3_5-NLS (control) fusion constructs were transfected with siRNAs against

myosin VI and treated with DOX as indicated, followed by western blotting using antibodies against myosin VI and GFP. Panel **h** relates to **Fig. 4f**: U2OS cells were transfected with GFP-tail constructs for 24 h as indicated, followed by western blotting using antibodies against myosin VI and GFP. Ponceau S staining was performed to control for equal loading.

g, Compartment-specific localization of tagged myosin VI-tails. U2OS cells were transfected with GFP or GFP-tail constructs as indicated. Nuclei were stained with Hoechst (white signal) (scale bar = 40μ m).

For panels **b-h**: Results were confirmed by at least two independent experiments. Uncropped blots are shown at the end of this file.

Supplementary Fig. 6 WRNIP1 depletion has no effect on the association of myosin VI with replication forks a, U2OS cells were transfected with siRNAs for 72 h as indicated, followed by SIRF assay. Left: dot plots of PLA signal intensities with mean values -/+ 95 % confidence interval. Significance levels were calculated using the two-tailed Mann-Whitney test from the indicated number of nuclei per sample (ns, non-significant, ****: p<0.001, ***: p<0.001, *: p<0.05). Right: representative images with Hoechst staining in blue and PLA signals in magenta, scale bar = 10 μ m.

b, Western blot analysis to monitor knockdown efficiencies for SIRF assays shown in Fig. **5c** and panel **a**. Uncropped blots are shown at the end of this file.

For panels **a-b**: Results were confirmed by at least two independent experiments.

Nucleotide sequence of the lead DARPin M6G4

Amino acid sequence of the lead DARPin M6G4

N-cap	1st repeat
DLGKKLLEAAWYGQDDEVRILMANGADVNA	TDDYGATPLHLAAHQGHLEIVEVLLKAGADVNA

2nd repeat	3rd repeat
DDQMGFTPLHLAAYHGHLEIVEVLLKTGADVN	AEDIVGFTPLHLAAWFGHLEIVEVLLKHGADVNA

С-сар
QDIVGKTPFDLAIDNGNEDIAEVLQKSAK

Supplementary Fig. 7 Nucleotide and amino acid sequence of the myosin VI-specific DARPin M6G4

Supplementary Tables

Plasmids	Source	ID, Cat#
pGEX6P1	Merck	Cytiva 28-9546-48
pGEX6P1-MyUb	He et al. ²	2893
pBirAcm	Avidity	AVB99
pAC4	Avidity	pAC4
pET30-MIUMyUb-iso1-AVI-His	This study	3392
pET30-MIUMyUb-iso2-AVI-His	This study	3393
pET30-MIUMyUb-iso3-AVI-His	This study	3394
pENTR4-myo6-iso2	This study	4382
pDEST-TO-YFP-FRT-myo6	This study	4478
pEGFP-C1	Clontech	2535
pEGFP-C1 E3_5 (DARPin)	This study, derived from	4008
	Binz et al. ³	
pEGFP-C1 M6B10 (DARPin)	This study	4007
pEGFP-C1 M6G4 (DARPin)	This study	4009
pEGFP-C1 M6B11 (DARPin)	This study	4057
pEGFP-C1 M6F11 (DARPin)	This study	4058
pEGFP-C1 M6B12 (DARPin)	This study	4059
pCDNA5 FRT TO GNb-2xRING	Ibrahim et al. ¹	4758
pCDNA5-FRT-TO-EGFP-M6G4-2xRING	This study	4912
pCDNA5-FRT-TO-EGFP-E3_5-2xRING	This study	5056
pENTR4-3xNLS-M6G4	This study	5053
pDEST-FRT-TO-YFP-3xNLS-M6G4	This study	5055
pENTR4-3xNLS-E3_5	This study	5052
pDEST-FRT-TO-YFP-3xNLS-E3_5	This study	5054
pOG44 – Flp-Recombinase	Thermo Fisher Scientific	V600520
pEGFP-C1-myo6 (fl)	Wollscheid et al. ⁴	2905
pEGFP-C1-myo6-tail (aa732-1262)	Wollscheid et al. ⁴	2908
pEGFP-C1-myo6-tail RRL→AAA	This study	5356
pEGFP-C1-myo6-tail ubiquitin binding	This study	5358
mutant (A1013G+I1072A*)		
pEGFP-C1-myo6-tail DNA binding mutant	This study	5498
(K1165-1167A)		
pEGFP-C1-myo6-tail lipid binding mutant	This study	5384
(K1093A, K1095A)		
pEGFP-C1-myo6-tail cargo binding mutant	This study	5383
(WLY)		
p3xFlag-CMV-YFP-3xNLS-myo6-tail	This study	5463
p3xFlag-CMV-YFP-NES-myo6-tail	This study	5453
pENTR221-SSBP1	Orfeome OCAA	3183
pENTR221-PoID1	Orfeome OCAA	2925
pENTR221-PDS5A	Orfeome OCAA	3185
pENTR221-RUVBL1	Orfeome OCAA	3187
pENTR221-RUVBL2	Orfeome OCAA	3188
pENTR221-WRNIP1	Orfeome OCAA	3184
pENTR221-PRMT5	Orfeome OCAA	3193

Supplementary Table 1. Plasmids used in this study

pDEST-EGFP-SSBP1	This study	42340
pDEST-EGFP-PoID1	This study	39024
pDEST-EGFP-PDS5A	This study	49948
pDEST-EGFP-RUVBL1	This study	38500
pDEST-EGFP-RUVBL2	This study	34352
pDEST-EGFP-WRNIP1	This study	5313
pDEST-EGFP-PRMT5	This study	37484
pcDNA6.2 N-EmGFP-UBR5-V5	Addgene (#52050)	2689
pET15b-TEVs-F-USP2cat-A	This study	3239
pET3a-Ubi(K63R)	Parker et al. ⁵	684
pET21(+)-His6-Ubc13	Renz et al. ⁶	3010
pET30-His6-TEV-Mms2	Renz et al. ⁶	2807
pET30-His6-TEV-Pib1RING+100aa	Renz et al. ⁶	3019
pET28-mE1 (ubiquitin activating enzyme E1)	Carvalho et al. ⁷	2448

*: I1072 in this construct (isoform 2) corresponds to I1104 in the long isoform (3). Mutation to alanine abrogates ubiquitin binding of the MyUb domain.

Supplementary Table 2. Antibodies used in this study

Antibody	Source	Identifier
Mouse monoclonal anti-GFP	Roche	Cat#11814460001;
(clone 7.1/13.1)		RRID: AB_390913
Mouse monoclonal anti-	Merck	Cat#M0691
Myosin VI (clone MUD19)		RRID:AB_369989
Rabbit polyclonal anti-Myosin	Wollscheid et al. ⁴	n/a
VI	(obtained from Simona Polo,	
	IFOM in Milan, Italy)	
Rabbit polyclonal anti- WRNIP1	Bethyl laboratories	Cat#A301-389A-T
		RRID:AB_938087
Mouse monoclonal anti-WHIP	Santa Cruz Biotechnology	Cat#sc-376438
(clone A-8)		RRID:AB_11149006
Rabbit polyclonal anti-DNA-	Cell Signaling Technology	Cat#4602
PKcs		RRID:AB_10692482
Rabbit polyclonal anti-53BP1	Novus Biologicals	Cat#NB100-304
	A	RRID:AB_10003037
Rabbit polyclonal anti-SMC1	Bethyl Laboratories	Cat#A300-055A
		RRID:AB_66638
Rabbit monocional anti-VCP	Cell Signaling Technology	Cat#2649
(Clone 7F3)	Cell Circalia e Techa e le cu	RRID:AB_2214629
(along D10411)	Cell Signaling Technology	
(CIONE DIOAII)	Abcom	RRID:AB_2142705
(clope 7981048)	Abcam	
Rabbit monoclonal anti-Rad21	Cell Signaling Technology	Cat#12673
(clone D5Y8S)		RRID'AB 2797988
Mouse polyclonal anti-REC4	Abcam	Cat#ab2627
		RRID:AB 303218
Mouse monoclonal anti-PCNA	David P. Lane ⁸	n/a
(clone PC10)	(obtained from Bořivoj	
	Vojtěšek, Masaryk Memorial	
	Cancer Institute in Brno, Czech	
	Republic)	
Rabbit polyclonal anti-PCNA	Abcam	Cat#ab18197
		RRID:AB_444313
Mouse monoclonal anti-BRCA2	Merck	Cat#OP95
(clone 2B)		RRID:AB_213443
Rabbit monoclonal anti-Rad51	Cell Signaling Technology	Cat#8875
(clone D4B10)		RRID:AB_2721109
Rabbit polycional anti-HLIF	Alexandra Belayew	n/a
(CIONE ARTZ)		
	Belayew, ONIONS IN MONS,	
Mouse monoclonal anti-	Santa Cruz Biotechnology	Cat#sc-376377
SMARCAL1 (clone A-2)	Santa Cruz Diotechnology	RRID:AB 10987841
Babbit polyclonal anti-7BANB3	Bethyl Laboratories	Cat#A303-033A
Mouse monoclonal anti-Biotin	Abcam	Cat#ab201341
(clone Hyb-8)		RRID:AB 2861249
Mouse monoclonal anti-BrdU	BD Biosciences	Cat#347580
(clone B44) (IdU)		RRID:AB_400326

	-	
Rat monoclonal anti-BrdU	Abcam	Cat#ab6326
(clone BU1/75 (ICR1)) (CldU)		RRID:AB_305426
Rabbit polyclonal anti-	Cell Signaling Technology	Cat#2341
phospho-Chk1 (Ser345)		RRID:AB_330023
Mouse monoclonal anti-Chk1	Cell Signaling Technology	Cat#2360
(clone 2G1D5)		RRID:AB_2080320
Rabbit polyclonal anti-	Cell Signaling Technology	Cat#2344
phospho-Chk 1 (Ser317)		RRID:AB_331488
Mouse monoclonal anti-	Merck	Cat#H1029
polyHistidine (clone HIS-1)		RRID:AB_260015
Mouse monoclonal anti- β -	Merck	Cat#A2228
actin (clone AC-74)		RRID:AB_476697
Mouse monoclonal anti-	Cell Signaling Technology	Cat#3936
ubiquitin (clone P4D1)		RRID:AB_331292
IRDye [®] 680LT donkey anti-	LICOR	Cat#926-68023;
rabbit IgG secondary		RRID: AB_10706167
Antibody		
IRDye [®] 680LT donkey anti-	LICOR	Cat#926-68072;
mouse IgG secondary		RRID: AB_10953628
antibody		
IRDye [®] 800CW goat anti-rabbit	LICOR	Cat#926-32211;
IgG secondary antibody		RRID: AB_621843
IRDye [®] 800CW donkey anti-	LICOR	Cat#926-32212;
mouse IgG secondary antibody		RRID: AB_621847
Polyclonal goat anti-goat HRP	Dako	Cat# P044901-2
secondary antibody		RRID:AB_2617143
Polyclonal goat anti-mouse	Dako	Cat#P044701-2
HRP secondary antibody		RRID:AB_2617137
Polyclonal goat anti-rabbit HRP	Dako	Cat#P044801-2
secondary antibody		RRID:AB_2617138
Goat anti-Rat IgG (H+L)	Thermo Fisher Scientific	Cat#A-11006
Secondary Antibody, Alexa		RRID:AB_2534074
Fluor 488		
Goat anti-Mouse IgG (H+L)	Thermo Fisher Scientific	Cat#A-21236
Secondary Antibody, Alexa		RRID:AB_2535805
Fluor 647		
Goat anti-Rabbit IgG (H+L)	Thermo Fisher Scientific	Cat#A-21244
Cross-Adsorbed, Alexa Fluor		RRID:AB_2535812
647		

Supplementary Table 3. siRNAs used in this study

siRNA	Source	Identifier
Allstars Negative control siRNA	Qiagen	Cat#SI03650318
Hs_MYO6_5 FlexiTube siRNA	Qiagen	Cat#SI03142692
Hs_MYO6_7 FlexiTube siRNA	Qiagen	Cat#SI04243351
Hs_MYO6_8 FlexiTube siRNA	Qiagen	Cat#SI04370737
Hs_MYO6_10 FlexiTube siRNA	Qiagen	Cat#SI04998749
FlexiTube GeneSolution	Qiagen	Cat# GS56897
GS56897 for WRNIP1		
FlexiTube GeneSolution GS675	Qiagen	Cat#GS675
for BRCA2		
SiRNA Silencer Select [Hs]	Thermo Fisher Scientific	Cat#s531930
RAD51		
SiRNA Silencer Select [Hs]	Thermo Fisher Scientific	Cat#s11734
RAD51		
siRNA Silencer Select [Hs] HLTF	Thermo Fisher Scientific	Cat#s13137
SiRNA Silencer Select [Hs]	Thermo Fisher Scientific	Cat#s38488
ZRANB3		
SiRNA Silencer Select [Hs]	Thermo Fisher Scientific	Cat#s224929
ZRANB3		
Hs_SMARCAL1_3 FlexiTube	Qiagen	Cat#SI00103194
siRNA		
Hs_SMARCAL1_1 FlexiTube	Qiagen	Cat#SI00103180
siRNA		

Supplementary Table 4. Oligonucleotides used in this study

Oligonucleotides for mutagenesis	Sequence (5´- 3´)	Construct	ID
Myo6 RRL→ AAA	GGCAGCTTGCAGAGAAGAATTTCATGCGGCAGCAAA	pEGFP-C1-myo6-	4898
For	AGTGTATCATGCTTGGAAATCTAAG	tail RRL \rightarrow AAA	
Myo6 RRL→ AAA	CTTAGATTTCCAAGCATGATACACTTTTGCTGCCGCAT		4899
Rev	GAAATTCTTCTCTGCAAGCTGCC		
Myo6 A1013G For	CGGCTTCACTCTGGGCAATCCTCAGGCCCAGCTCCCG	pEGFP-C1-myo6-	4896
	GTCCCTGCGCTCC	tail ubiquitin	
Myo6 A1013G	CGGCTTCACTCTGGGCAATCCTCAGGCCCAGCTCCCG	binding mutant	4897
Rev	GTCCCTGCGCTCC	(A1013G+I1072A)	
Myo6 I1072A*	CGTGATACCATCAATACTTCTTGTGATGCTGAGCTCCT		5250
For	GGCAGCTTGCAGAGAAGAATTTCATAGG		
Myo6 I1072A*	CCTATGAAATTCTTCTCTGCAAGCTGCCAGGAGCTCA		5251
Rev	GCATCACAAGAAGTATTGATGGTATCACG		
Myo6 DNA bdg	GCCGACCAGTACAAAGACCCTCAGGCTGCGGCAGCA	pEGFP-C1-myo6-	6223
mut For	GGCTGGTGGTATGCCC	tail DNA binding	
Myo6 DNA bdg	GGGCATACCACCAGCCTGCTGCCGCAGCCTGAGGGT	mutant (K1165-	6224
mut Rev	CTTTGTACTGGTCGGC	1167A)	
Myo6 lipid bdg	GGAGACTAAAAGTGTATCATGCTTGGGCATCTGCGAA	pEGFP-C1-myo6-	6068
mut For	CAAGAAGAGAAATACTGAAACAGAGCAACGTGCTCC	tail lipid binding	
Myo6 lipid bdg	GGAGCACGTTGCTCTGTTTCAGTATTTCTCTTCTTGTT	mutant (K1093A,	6069
mut Rev	CGCAGATGCCCAAGCATGATACACTTTTAGTCTCC	K1095A)	
Myo6	CCCTCAGAGTAAGAAAAAAGGCTGGTTGTATGCCCAT	pEGFP-C1-myo6-	6064
WWY→WLY For	TTTGATGGACCATGGATTGCCCGG	tail cargo binding	
Myo6	CCGGGCAATCCATGGTCCATCAAAATGGGCATACAAC	mutant (WLY)	6065
WWY→WLY Rev	CAGCCTTTTTTCTTACTCTGAGGG		
Oligonucleotide		Constant	5
for amplification	Sequence (5 - 3)	Construct	ID
MIU FOR BamHI	CGGGATCCCAACAGCAAGCAGTTCTGGAGC	pET30-MIUMyUb-	3837
MyUb Rev no		iso2-AVI-His	3838
STOP EcoRI	GGAATICICICITCIIGIICIIAGATIICCAAGCAIG		
Myo6 Kpnl FWD	GGGGTACCATGGAGGATGGAAAGCCCGTTTGGG	pENTR4-myo6-	5055
Myo6 Xba REV	GCTCTAGACTACTTTAACAGACTCTGCAGCATGGC	iso2	5056
EGFP for_HINDIII	CCCAAGCTTATGGTGAGCAAGGGCGAGGA	pCDNA5-FRT-TO-	5597
M6G4 rev_NHEI	CTAGCTAGCTAGCAGATTTCTGCAGAACTTCAGCG	EGFP-M6G4- 2xRING	5594
E3_5_rev_NHEI	CTAGCTAGCTTGCAGGATTTCAGCCAGGTC	pCDNA5-FRT-TO- EGFP-E3_5- 2xRING	5688
3xNLS for_KpnI	GGGGTACCCCATGGGGGCCCAG	pENTR4-NLS-G4	5641
M6G4 rev_Xhol	CCGCTCGAGTAGCAGATTTCTGCAGAACTTCAGCG		5640
E3_5 Xhol REV	CGGCTCGAGTTGCAGGATTTCAGCCAGGTCCTCG	pENTR4-NLS-E3_5	5360
GFP For Kpnl	GATCGGTACCGATGGTGAGCAAGGGCG	p3xFlag-CMV-	6189
Myo6 Xba REV	GCTCTAGACTACTTTAACAGACTCTGCAGCATGGC	YFP-NES-myo6- tail	5056

*: I1072 in this construct (isoform 2) corresponds to I1104 in the long isoform (3).

Supplementary Table 5. Reagents used in this study

Chemical	Source	Identifier
Doxycycline hydrochloride	Merck	Cat#D3447
5-Chloro-2'-deoxyuridine	Merck	Cat#C6891
5-iodo-2'-desoxyuridin	Merck	Cat#I7125
5-ethynyl-2'-deoxyuridine	Merck	Cat#900584
Azide-PEG3-biotin conjugate	Merck	Cat#762024
Mirin	Merck	Cat#M9948
DNA2 inhibitor C5	AOBIOUS	Cat#AOB9082
IPTG	Generon	Cat#GEN-S-02122
Ni-NTA agarose	Qiagen	Cat#30250
Imidazole	Merck	Cat#I2399
Glutathione	Merck	Cat#G4251
IPTG	Generon	Cat#GEN-S-02122
Paraformaldehyde	Merck	Cat#P6148
Formaldehyde solution, 36.5- 38% in H2O	Merck	Cat#F8775
Glycine	Merck	Cat#G7126
Methanol	Thermo Fisher Scientific	Cat#15654570
Acetic acid	Merck	Cat#A6283
SIGMAFAST protease inhibitor	Merck	Cat#S8830
cocktail		
cOmplete Protease Inhibitor	Roche	Cat#5056489001
Cocktail		
Hygromycin B Gold	Invivogen	Cat#ant-hg-1
Pfu Turbo DNA Polymerase	Agilent	Cat#600250
Dpnl	New England Biolabs	Cat#R0176L
Hydroxyurea	Merck	Cat#H8627
Streptavidin Agarose Resin	Thermo Fisher Scientific	Cat#11846764
Polyethyleneimine	Polysciences	Cat#23966-2
Lipofectamine [®] 2000	Thermo Fisher Scientific	Cat#11668019
Lipofectamine [®] RNAiMAX	Thermo Fisher Scientific	Cat#13778150
FuGENE [®] HD Transfection	Promega	Cat#E2311
Reagent		
ProLong [™] Diamond Antifade	Thermo Fisher Scientific	Cat#15205739
Mountant		0.1//04060005
DMEM, high glucose, pyruvate,	Thermo Fisher Scientific	Cat#21969035
no giutamine	Thomas Fishor Scientific	Cat#25200054
rod	Thermo Fisher Scientific	Cat#25300054
Ponicillin Strontomycin (10.000	Thormo Fisher Scientific	Cat#15140122
	Thermo Fisher Scientific	Cat#15140122
L-Glutamine (200 mM)	Thermo Eisber Scientific	
Blasticidin	Invivogen	Cat#ant-bl-1
Triton X-100	Merck	
Albumin (bovine serum	Merck	Cat#17204
albumin. BSA)		
Copper (II) sulfate	Merck	Cat#469130
Sodium deoxycholate	Merck	Cat#D6750

SDS, 20%, Sodium dodecyl	Merck	Cat#05030
	Thorne Fisher Colontifie	Co+#11550166
(4X)	Thermo Fisher Scientific	Cat#11228100
GFP-Trap magnetic agarose	Chromotek	Cat#gtma-100
beads		
Milk powder, skim milk	Merck	Cat#70166
Tween-20	Merck	Cat#P7949
Amersham ECL Select Western	Thermo Fisher Scientific	Cat#RPN2235
Blotting Detection Reagent		
Amersham ECL Prime Western	Thermo Fisher Scientific	Cat#12994780
Blotting Detection Reagent		
Ponceau S	Merck	Cat#P3504
Hoechst 33342	Thermo Fisher Scientific	Cat#11534886
Biotin	Merck	Cat#B4501
PageRuler Prestained Protein	Thermo Fisher Scientific	Cat#11822124
Ladder		
4-15% Criterion™ TGX Stain-	Bio-Rad Laboratories	Cat#567-8085
Free™ Protein Gel, 26 well, 15		
μΙ		
Mini-PROTEAN TGX Stain Free	Bio-Rad Laboratories	Cat#456-8086
Gels, 4-15%, 15-well		
SILAC light isotopes: L-Arg(0)	Merck	Cat#A6969
and L-Lys(0)		Cat#L8662
SILAC medium isotopes: L-	Cambridge Isotope	Cat#CLM-2265-H-1
Arg(6) and L-Lys(4)	Laboratories	Cat#DLM-2640-1
Trypsin, MS-approved	Serva	Cat# 37286
Glutathione Sepharose High	Cytiva	Cat#17527901
Performance resin (GSH)		
Recombinant ubiquitin	In house protein production	Carvalho et al ⁶
activating enzyme (E1)	core facility	
Ubiquitin from bovine	Merck	Cat#U6253-25MG
erythrocytes		
MG-132, 25 mg (Z-Leu-Leu-	Enzo Life Sciences	Cat#BML-PI102-0025
Leu-CHO)		
Alexa Fluor™ 647 Phalloidin	Thermo Fisher Scientific	Cat#A22287
μ-Slide 8 Well Chamber Slides	Ibidi	Cat#80806
Critical commercial assays		
Duolink [®] In Situ Red Starter Kit	Merck	Cat#DUO92101-1KT
Mouse/Rabbit		
InstantBlue, 1L Protein Stain	Biozol	Cat#EXP-ISB01L
Trans-Blot [®] Turbo™ RTA Midi	Bio Rad laboratories	Cat#1704271
Nitrocellulose Transfer Kit		
Gateway [®] LR Clonase [®] II	Thermo Fisher Scientific	Cat#10134992
enzyme mix		
Colloidal Blue staining kit	Thermo Fisher Scientific	Cat#LC6025
Biotin CAPture kit	GE Healthcare	Cat#28920233
		1

Supplementary References

- 1. Ibrahim, A.F.M. et al. Antibody RING-Mediated Destruction of Endogenous Proteins. *Mol Cell* **79**, 155-166 e159 (2020).
- 2. He, F. et al. Myosin VI Contains a Compact Structural Motif that Binds to Ubiquitin Chains. *Cell Rep* **14**, 2683-2694 (2016).
- 3. Binz, H.K., Stumpp, M.T., Forrer, P., Amstutz, P. & Plückthun, A. Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. *J Mol Biol* **332**, 489-503 (2003).
- 4. Wollscheid, H.P. et al. Diverse functions of myosin VI elucidated by an isoform-specific alphahelix domain. *Nat Struct Mol Biol* **23**, 300-308 (2016).
- 5. Parker, J.L. & Ulrich, H.D. Mechanistic analysis of PCNA poly-ubiquitylation by the ubiquitin protein ligases Rad18 and Rad5. *EMBO J* **28**, 3657-3666 (2009).
- 6. Renz, C. et al. Ubc13-Mms2 cooperates with a family of RING E3 proteins in budding yeast membrane protein sorting. *J Cell Sci* **133** (2020).
- 7. Carvalho, A.F. et al. High-yield expression in Escherichia coli and purification of mouse ubiquitin-activating enzyme E1. *Mol Biotechnol* **51**, 254-261 (2012).
- Waseem, N.H. & Lane, D.P. Monoclonal antibody analysis of the proliferating cell nuclear antigen (PCNA). Structural conservation and the detection of a nucleolar form. *J Cell Sci* 96 (Pt 1), 121-129 (1990).
- 9. Debauve, G. et al. Early expression of the Helicase-Like Transcription Factor (HLTF/SMARCA3) in an experimental model of estrogen-induced renal carcinogenesis. *Mol Cancer* **5**, 23 (2006).

Uncropped images for Supplementary Figures

Supplementary Fig. 1c

Ponceau

Supplementary Fig. 2a

Ponceau

Муоб

Supplementary Fig. 2b

Supplementary Fig. 2c

Supplementary Fig. 2d

Ponceau

Supplementary Fig. 2e

Supplementary Fig. 2g

Supplementary Fig. 3g

Supplementary Fig. 4b

M6G4

M6B11

M6B10 M6B12

M6F11

Supplementary Fig. 4c

Supplementary Fig. 4d

Supplementary Fig. 4f

Supplementary Fig. 5d

Supplementary Fig. 5b

Supplementary Fig. 5c

	GFP
	-

Supplementary Fig. 5e

Supplementary Fig. 5f

Supplementary Fig. 5h

Supplementary Fig. 6b

