Supplementary Information Yann Waltenspühl^{1,2}, Janosch Ehrenmann^{1,3,#}, Santiago Vacca^{1,#}, Cristian Thom^{1,#}, Ohad Medalia¹ and Andreas Plückthun^{1*} ¹ Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland. ²Present address: Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv, Denmark ³Present address: leadXpro AG, PARK innovAARE, CH-5234 Villigen, Switzerland #These authors contributed equally: Janosch Ehrenmann, Santiago Vacca, Cristian Thom *Correspondence and requests for materials should be addressed to A.P. (plueckthun@bioc.uzh.ch Supplementary Fig. 1 Purification of OTR_{EM} & complex formation. a Small-scale analytical size-exclusion chromatography (SEC) profiles from initial purifications of wtOTR (black curve) and OTR-D153Y termed OTR_{EM} (red curve). SEC profiles present fair loads. **b** Agonist profiles of wtOTR and OTR_{EM}. Dose-response curves were obtained from IP1 accumulation assays, and saturation binding assays were measured by whole-cell ligand binding assays. Saturation binding curves are shown with mean \pm standard deviation from six (wtOTR) or three (OTR_{EM}) independent experiments performed in triplicates. IP1 dose response curves are shown with mean \pm standard deviation from six (wtOTR) or two (OTR_{EM}) independent experiments performed in duplicates. Source data are provided as a Source Data file. \mathbf{c} SEC profile of the OTR:OT: $G_{o/q}$:scFv16 complex. The red rectangle highlights the pooled fraction used for cryo-EM analysis. \mathbf{d} LDS-PAGE gel of the pooled complex fraction and the single components. ## Supplementary Fig. 2 Overview of single-particle cryo-EM data processing. **a** A representative cryo-EM micrograph of the 11,667 movie stacks of the OTR:OT: $G_{o/q}$:scFv16 complex. Scale bar, 20 nm. **b** Representative 2D averages showing distinct secondary structure features from different views of the complex. **c** 3D classification workflow and refinement. Supplementary Fig. 3 Resolution of the OTR:OT:G_{0/q}:scFv16 complex. **a** Local resolution analysis of the OTR:OT: $G_{o/q}$:scFv16 complex. **b** Angular distribution of the particle orientations of the OTR:OT: $G_{o/q}$:scFv16 complex. **c** The gold-standard Fourier shell correlation curves for the map of the OTR:OT: $G_{o/q}$:scFv16 complex. **d** For cross-validation, FSC curves of the refined model versus full map (black), refined map versus half map 1 (blue), and refined model versus half map 2 (orange) were calculated. Supplementary Fig. 4 Cryo-EM density within OTR. Cryo-EM density maps for all OTR transmembrane helices, helix VIII, oxytocin, and the interacting G_q $\alpha 5$ helix of the G protein. Supplementary Fig. 5 Conserved activation mechanism by oxytocin and vasopressin. a Cylindrical representation of active OTR:OT complex with close-up on kink in helix VII. b Cylindrical representation of active $V_2R:AVP$ complex (PDB ID: 7DW9 [https://www.rcsb.org/structure/7DW9]) with close-up on kink in helix VII. c Amino acid sequence alignment of the kink region for all human oxytocin and vasopressin receptors. Amino acid positions are denoted in Ballesteros-Weinstein numbering (B.-W.).d OT affinity profiles of OTR and V_{1A}R kink region mutants. Bars represent differences in affinity of the cognate ligand (mean $pK_D \pm SEM$ from three independent experiments in triplicates) compared to wtOTR or wtV_{1A}R. Source data are provided as a Source Data file. e OT IP1 accumulation dose-response curves of OTR and V_{1A}R kink region mutants. Bars represent differences in IP1 accumulation potency of the cognate ligand (mean pEC₅₀ \pm SEM from three (OTR A318G) or six (V_{1A}R G337A) independent transfections in duplicates) compared to wtOTR or wtV_{1A}R. Source data are provided as a Source Data file. Supplementary Fig. 6 Comparison of the OTR and V2R. Structural superposition of the OTR:OT with $V_2R:AVP$ (PDB ID: 7QVM [https://www.rcsb.org/structure/7DW9], illustrating the main differences between active OTR and V_2R . Arrows indicate the main differences in helix positioning and length. ## **Supplementary Table 1 Single-particle cryo-EM statistics.** | | OTR:OT:G _{o/q} :scFv16 | | |---|---------------------------------|--| | | PDB ID: 7QVM | | | Data collection | | | | Microscope | Titan Krios G3i | | | Detector | Gatan K3 | | | Energy filter slit width (eV) | 20 | | | Magnification | 130,000 | | | Voltage (kV) | 300 | | | Electron exposure (e ⁻ /Å ²) | 63.7 | | | Defocus range (μm) | 0.8-2.4 | | | Pixel size (Å) | 0.65 | | | Symmetry imposed | C1 | | | Number of Micrographs | 11,667 | | | Initial particle images (no.) | 6.5 Mio | | | Final particle images (no.) | 392,369 | | | Map resolution (Å) | 3.25 | | | FSC threshold | 0.143 | | | Refinement | | | | Number of atoms | | | | All | 8,551 | | | Protein | 8,482 | | | Ligand | 69 | | | Model validation | | | | CC map vs. model (%) | 76 | | | RMSD | | | | Bond lengths (Å) | 0.27 | | | Bond angles (°) | 0.640 | | | Ramachandran statistics | | | | Favored regions (%) | 96.4 | | | Allowed regions (%) | 3.5 | | | Outliers (%) | 0.0 | | | Rotamer outliers (%) | 0.0 | | | C-beta deviations (%) | 0.0 | | | Clashscore | 11.4 | | | MolProbity overall score | 1.8 | | **Supplementary Table 2 Effects of mutations on OT-induced IP1-accumulation.** | construct | EC ₅₀ [nM] | ΔpEC_{50} | E _{max} (% of wt) | n | |---------------------|-----------------------|---------------------------|----------------------------|---| | wtOTR | 8.4 ± 4 | - | 100 | 6 | | OTR_{EM} | 42.9 ± 17 | -0.52 ± 0.18 | 229 ± 29 | 2 | | Q92A | 222.3 ± 141 | -1.72 ± 0.28 | 12 ± 1 | 3 | | Q96A | 1540 ± 286.3 | -2.75 ± 0.05 | 68 ± 13 | 3 | | K116A | 6.1 ± 0.8 | $\textbf{-}0.36 \pm 0.03$ | 48 ± 5 | 3 | | Q119A | 444.3 ± 192.6 | -2.15 ± 0.16 | 107 ± 33 | 3 | | M123A | n.a. | - | (1 ± 1) | 3 | | Q171A | 992.5 ± 180 | -2.56 ± 0.04 | 90 ± 12 | 3 | | Q171N | 39.1 ± 10.2 | $\textbf{-}1.14 \pm 0.1$ | 74 ± 11 | 3 | | F175A | 3482 ± 857.7 | $\textbf{-3.09} \pm 0.07$ | 66 ± 12 | 3 | | W188A | 155.7 ± 62 | -1.08 ± 0.18 | 85 ± 9 | 2 | | I201A | 89.5 ± 15.4 | -1.52 ± 0.12 | 22 ± 7 | 3 | | I204A | n.a. | - | (-2 ± 4) | 3 | | F291A | 541.8± 179.4 | -1.63 ± 0.51 | 28 ± 7 | 2 | | F292A | 6.1 ± 3.3 | 0.36 ± 0.62 | 9 ± 1 | 2 | | Q295A | 51.3 ± 3.1 | -0.63 ± 0.34 | 32 ± 1 | 2 | | L316A | 21.9 ± 10.7 | -0.21 ± 0.13 | 18 ± 4 | 2 | | A318G | 4.6 ± 0.7 | 0.39 ± 0.2 | 50 ± 2 | 3 | | wtV _{1A} R | 157.8 ± 27.6 | - | 100 | 6 | | G337A | 249.7 ± 90.5 | -0.14 ± 0.06 | 215 ± 15 | 6 | HTRF-based measurements of IP1 accumulation in HEK293T cells expressing wild-type and mutated receptor variants. Activation curves were analyzed by fitting each experiment separately to a three-parameter logistic equation. All values are expressed as mean \pm SEM of the indicated number of independent experiments performed in duplicate. n.a., no activation. Source data are provided as a Source Data file. Supplementary Table 3 Effects of mutations on OT binding. | construct | K _D [nM] | $\Delta p K_D$ | B _{max} (% of wt) | n | |---------------------|---------------------|-------------------------|----------------------------|---| | wtOTR | 1.4 ± 0.2 | 0 | 100 | 6 | | OTR_{EM} | 6.4 ± 0.7 | $\textbf{-0.6} \pm 0.1$ | 252 ± 10 | 3 | | A318G | 0.9 ± 0.2 | 0.28 ± 0.17 | 28 ± 5 | 3 | | wtV _{1A} R | 9.3 ± 2.2 | 0 | 100 | 3 | | G337A | 20.9 ± 0.2 | -0.38 ± 0.11 | 165 ± 23 | 3 | Whole-cell specific saturation binding experiment of fluorescently labelled peptide OT-HL488 to HEK293T cells expressing wild-type and mutated receptor variants. Binding curves were analyzed by fitting each experiment separately to a one-site saturation binding equation. All values are expressed as mean \pm SEM of the indicated number of independent experiments performed in triplicate. B_{max} values indicate the amount of functional receptor. Source data are provided as a Source Data file.