SUPPLEMENTARY INFORMATION

Supplementary Figure 1-13

Supplementary Table 1: Genotypes by figures Supplementary Table 2: Primers used in this study

SUPPLEMENTARY FIGURES

Supplementary Fig 1. Expression of HA trap using *ptc*-Gal4 did not affect Dpp signaling or patterning and growth of the adult wing in the absence of a HA-tagged protein.

a-b, pMad staining of ptc>+ wing disc (control) (**a**), and ptc>HA trap wing disc (**b**). Scale bar 50 µm. **c**, Average fluorescence intensity profile of α -pMad staining of (**a-b**). ptc>+ wing disc (control) (n=12), and ptc>HA trap wing disc (n=14). Data are presented as mean+/-SD. **d**, Comparison of wing pouch size of (**a-b**). ptc>+ wing disc (control) (n=14) and ptc>HA trap wing disc (n=12). Data are presented as mean+/-SD. **d**, Comparison of wing pouch size of (**a-b**). ptc>+ wing disc (control) (n=14) and ptc>HA trap wing disc (n=12). Data are presented as mean+/-SD. Two-sided unpaired Student's t-test with unequal variance was used (p=0.211). (n.s; not significant). **e-f**, Adult wing of ptc>+ (**e**), and ptc>HA trap (**f**).

Supplementary Fig 2. Patterning and growth defects by HA trap and Dpp trap expression using *ci-Gal4*

a–**j**, Patterning and growth defects by HA trap. (**a**, **c**, **e**, **g**, **i**) α -pMad (**a**), α -Brk (**c**), α -Sal (**e**), α -Omb (g), α -Ptc/Wg staining and HA trap (mCherry) (i) of control HA-dpp/HA-dpp, ci>+ (left) and HAdpp/HA-dpp, ci>HA trap (right). (b, d, f, h) Average fluorescence intensity profile of (a, c, e, g) respectively. Data are presented as mean+/-SD. (j) Comparison of compartment size of HA-dpp/HAdpp, ci > + wing pouch (control) (n=56) and HA-dpp/HA-dpp, ci > HA trap wing pouch (n=47). Data are presented as mean+/-SD. Two-sided Mann-Whitney test was used for comparison of the A compartment size (p=0.8355). (n.s; not significant) Two-sided unpaired Student's *t*-test with unequal variance was used for comparison of the P compartment size (p < 0.0001). (****p < 0.0001). k-t, Patterning and growth defects by Dpp trap. (k, m, o, q, s) α -pMad (k), α -Brk (m), α -Sal (o), α -Omb (q), α -Ptc/Wg staining and HA trap (mCherry) (s) of control HA-dpp/+, ci>+ (left) and HA-dpp/+, *ci>Dpp* trap (right). (l, n, p, r) Average fluorescence intensity profile of (k, m, o, q) respectively. Data are presented as mean+/-SD. t, Comparison of each compartment size of HA-dpp/+, ci>+ wing pouch (control) (n=37) and HA-dpp/+, ci>Dpp trap wing pouch (n=53). Data are presented as mean+/-SD. Two-sided unpaired Student's t-test with unequal variance was used for comparison of the A compartment size (p < 0.0001) and for comparison of the P compartment size (p < 0.0001). (****p < 0.0001). **u**, Comparison of normalized compartment size of wing pouch upon HA trap (n=47) and Dpp trap (n=53) expression using *ci-Gal4* (the same data set from Supplementary Fig. 2j and Supplementary Fig. 2t). Data are presented as mean+/-SD. Two-sided Mann-Whitney test was used for comparison of the A compartment size (p < 0.0001). Two-sided unpaired Student's *t*-test with unequal variance was used for comparison of the P compartment size (p < 0.0001). Dashed white lines mark the A-P compartment border. Scale bar 50 µm.

HA-dpp/HA-dpp, nub, ptc>HA trap

Supplementary Fig 3. Patterning and growth defects by concomitant HA trap expression using *ptc-Gal4* and *nub-Gal4*

a-b, Adult wing of control *HA-dpp/HA-dpp*, *nub*, *ptc*>+ (**a**), and *HA-dpp/HA-dpp*, *nub*, *ptc*>*HA trap* (**b**). **c**, Comparison of compartment size of (**a-b**). *HA-dpp/HA-dpp*, *nub*, *ptc*>+ adult wing (*n*=15) and *HA-dpp/HA-dpp*, *nub*, *ptc*>*HA trap* adult wing (*n*=16). Data are presented as mean+/-SD. Two-sided unpaired Student's *t*-test with unequal variance was used for comparison of the A compartment size (p<0.0001) and for comparison of the P compartment size (p<0.0001). (****p<0.0001). Note that patterning and growth defects were not enhanced by concomitant HA trap expression using *ptc-Gal4* and *nub-Gal4*.

Supplementary Fig 4. Blocking cell death does not rescue growth defects caused by HA trap or Dpp trap

a-d, α -Caspase-3 and α -Ptc/Wg staining of control wing disc (a), *HA-dpp/HA-dpp*, *ptc*>*HA trap* wing disc (b), and *HA-dpp/+*, *nub>Dpp trap* wing disc (c). The insets show HA trap or Dpp trap (mCherry) expression. Scale bar 50 µm. Note that wing discs where HA trap was expressed using ptc-Gal4 and wing discs where Dpp trap was expressed using nub-Gal4 were analyzed since each condition showed the most severe phenotypes among Gal4 lines used. (d) Comparison of the number of α -Caspase-3 positive cells of (**a**-**c**). Control wing disc (**a**, n=11), HA-dpp/HA-dpp, ptc>HA trap wing disc (**b**, n=10), and HA-dpp/+, nub>Dpp trap wing disc (c, n=10). Data are presented as mean+/-SD. Two-sided unpaired Student's *t*-test with unequal variance was used for comparison between (a) and (b) (p=0.1541). (n.s; not significant). Two-sided Mann-Whitney test was used for comparison between (a) and (c) (p < 0.0001). (****p < 0.0001). e-f, Adult wing of HA-dpp/HA-dpp, nub>HA trap (control) (e) and HA-dpp/HA-dpp, nub>HA trap, p35 (f). g, Comparison of compartment size of (e-f). HA-dpp/HAdpp, nub>HA trap adult wing (n=19) and HA-dpp/HA-dpp, nub>HA trap, p35 adult wing (n=23). Data are presented as mean+/-SD. Two-sided unpaired Student's *t*-test with unequal variance was used for comparison of the A compartment size (p=0.0003) and for comparison of the P compartment size (*p*<0.0001). (****p*<0.001, *****p*<0.0001). **h**-**i**, Adult wing of *HA-Dpp/+*, *nub>Dpp trap* (control) (**h**) and HA-dpp/+, nub>Dpp trap, p35 (i). j, Comparison of compartment size of (h-i). HA-Dpp/+, *nub>Dpp trap* adult wing (n=17) and *HA-dpp/+*, *nub>Dpp trap*, *p35* adult wing (n=17). Data are presented as mean+/-SD. Two-sided unpaired Student's *t*-test with unequal variance was used for comparison of the A compartment size (p=0.8750) and for comparison of the P compartment size (p=0.4260). (n.s; not significant).

Supplementary Fig 5. 5xQE.DsRed remains expressed in each compartment where tkv is genetically removed from the beginning of second instar stage.

a-d, α -HA (TkvHA^{FO}) staining (**a-d**) and α -Brk staining and 5xQE.DsRed expression (**a'-d'**) of control wing disc (**a**, **b**) and 5xQE.DsRed, tkvHA^{FO}/tkvHA^{FO}, tubGal80ts, ci>UAS-FLP (**c**, **d**). **e-h**, α -HA (TkvHA^{FO}) staining (**e-h**) and α -Brk staining and 5xQE.DsRed expression (**e'-h'**) of control wing disc (**e**, **f**) and 5xQE.DsRed, tkvHA^{FO}/tkvHA^{FO}, tubGal80ts, hh>UAS-FLP (**g**, **h**). Crosses were shifted from 18°C to 29°C at 4 day AEL (early second instar). Arrows indicate 5xQE.DsRed expression in the compartment where tkv is genetically removed. Scale bar 50 µm.

Supplementary Fig 6. A part of posterior wing pouch can grow without *tkv*.

a-b, α -HA (TkvHA^{FO}), α -pMad, 5xQE.DsRed, and merge of control wing disc (**a**), and wing disc where *tkv* is genetically removed from the entire P compartment using *Hh*-Gal4 (**b**). Upon removal of *tkv* from the P compartment, the 5xQE.DsRed reporter remained expressed in the P compartment (arrow) despite complete loss of pMad signal and severe growth defects in the P compartment. Note that anterior pMad signal was also affected probably because Hh target *dpp* expression is affected by the reduced number of Hh producing posterior cells. Scale bar 50 µm.

Supplementary Fig 7. 5xQE.DsRed reporter expression is largely independent of Dpp signaling **a-d**, α -pMad, 5xQE.DsRed, and merge of control (**a**), dpp^{d8}/dpp^{d12} (**b**), brk^{XA} (**c**), and brk^{XA} ; dpp^{d8}/dpp^{d12} (**d**) wing discs. Scale bar 50 μ m.

Supplementary Fig 8. Expression of a trap (containing DARPin 1240_C9) using *ptc*-Gal4 did not affect extracellular distribution of Dpp, pMad signaling, or patterning and growth of the adult wing

a-b, Extracellular α -Ollas staining (ExOllas) of *Ollas-HA-dpp/+*, *ptc>+* wing disc (control) (**a**), and *Ollas-HA-dpp/+*, *ptc>C9* wing disc (**b**). **c**, Average fluorescence intensity profile of extracellular α -Ollas staining of (**a-b**). *Ollas-HA-dpp/+*, *ptc>+* wing disc (control) (*n*=6), and *Ollas-HA-dpp/+*, *ptc>C9* wing disc (*n*=7). Data are presented as mean+/-SD. **d-e**, α -pMad of *ptc>+* wing disc (control) (**d**), and *ptc>C9* wing disc (**e**). **f**, Average fluorescence intensity profile of α -pMad staining of (**d-e**). *ptc>+* wing disc (control) (*n*=6), and *ptc>C9* wing disc (*n*=9). Data are presented as mean+/-SD. **g**, Comparison of wing pouch size of (**d-e**). *ptc>+* (control) (*n*=6), and *ptc>C9* disc (*n*=9). Data are presented as mean+/-SD. **g**, not significant). **h-i**, Adult wing of *ptc>+* wing disc (control) (**h**), and *ptc>C9* (**i**). Scale bar 50 µm.

Supplementary Fig 9. Lateral Sal expression is not affected by loss of Dpp signaling

a-b, α -Sal staining of *HA-dpp/+*, *ptc>+* disc (control) (**a**), and *HA-dpp/+*, *ptc>Dpp trap* disc (**b**). Each wing disc is from Fig. 5c and Fig. 5d, respectively. In an apical confocal section of control wing disc (z=-4µm), the lateral Sal expression is hidden due to the tissue architecture but in a basal confocal section of control wing disc (z=-15µm), the lateral Sal expression is easily detected (**a**). **c-e**, α -Brk, α -Sal, and merge of *dpp^{FO}/+*, *tubGal80ts*, *FLP/+* disc (control) (**c-d**, same wing disc), and *dpp^{FO}/dpp^{FO}*, *tubGal80ts*, *ci>FLP* disc (**e**). *dpp* was genetically removed from the mid-second instar. The lateral Sal expression is not significantly upregulated, although Brk is uniformly upregulated upon generic removal of *dpp* from the entire A compartment using *ci*-Gal4 (**e**). Scale bar 50 µm.

Supplementary Fig. 10. HA trap can trap Dpp more efficiently than Dpp trap

a-c, α -pMad and mCherry (Dpp trap or HA trap) in the P compartment of control wing disc (**a**), *HA-dpp/+*, *ptc>Dpp trap* wing disc (**b**), and *HA-dpp/HA-dpp*, *ptc>HA trap* (**c**). Scale bar 10 µm. **d**, Average fluorescence intensity profile of posterior α -pMad staining of (**a-c**). Data are presented as mean+/-SD. Arrow indicates pMad signal by leaked Dpp from Dpp trap.

Supplementary Fig. 11. pMad signaling at mid-second instar stage

a-a', α -GFP (**a**) and α -pMad (**a'**) staining of wing disc expressing the *d2GFP* reporter at mid-second instar stage (60hr AEL). Dotted line indicates A-P compartment boundary. Scale bar 25 μ m. **b**, Average fluorescence intensity profile of α -pMad staining of at mid-second instar stage (60hr AEL) (*n*=3). Data are presented as mean+/-SD.

Supplementary Fig. 12 Relatively normal anterior patterning and growth by blocking Dpp dispersal at different time points

a, *HA-dpp/HA-dpp*, *tubGal80ts*, *ptc*>+ control adult wings and *HA-dpp/HA-dpp*, *tubGal80ts*, *ptc*>*HA trap* adult wings. Crosses were shifted from 18 °C to 29 °C at indicated time point. **b-d**, P compartment size (**b**), A compartment size (**c**), and the size of the peripheral region between L1 and L2 (**d**) of *HA-dpp/HA-dpp*, *tubGal80ts*, *ptc*>*HA trap* adult wings (*n*=16, 13, 14, 24, 16, 13 at 5, 6, 7, 8, 9, 10 day) were normalized against each counter part size of *HA-dpp/HA-dpp*, *tubGal80ts*, *ptc*>+ control adult wings (*n*=12, 11, 14, 13, 14, 12 at 5, 6, 7, 8, 9, 10 day). Crosses were shifted from 18 °C to 29 °C at indicated time point. Data are presented as mean+/-SD.

Supplementary Fig 13. De-repression of Brk by genetic removal of tkv

 α -HA (TkvHA^{FO}) and α -Brk staining of wing discs in which *tkv* was genetically removed from A compartment using *ci*-Gal4 from different time points. The larvae were raised at 18 °C until a temperature shift to 29 °C to induce Gal4 expression. Time shown in each figure indicates the time of dissection after temperature shift. All the discs are the same age and only difference is how long *tkv* had been removed. Scale bar 50 µm.

SUPPLEMENTARY TABLE 1

Genotypes by figures

Fig. 1c-e: yw; HA-dpp/HA-dpp			
Fig. 2b: yw; ptc-Gal4, Ollas-HA-dpp/+			
Fig. 2d: yw; ptc-Gal4, Ollas-HA-dpp/+; UAS/LexAop-HA trap/+			
Fig. 2f, h: hsFLP; Ollas-HA-dpp/tub>CD2, Stop>Gal4, UAS-nlacZ; UAS/LexAop-HA trap/+			
Fig. 2j: hsFLP; ptc-Gal4, Ollas-HA-dpp/tub>CD2, Stop>Gal4, UAS-nlacZ; UAS/LexAop-HA			
trap/+			
Fig. 21: hsFLP; Ollas-HA-dpp/tub>CD2, Stop>Gal4, UAS-nlacZ; UAS/LexAop-HA trap/+			
Fig. 3a, h: (5xQE.DsRed); ptc-Gal4, HA-dpp/HA-dpp			
Fig. 3b, i: (5xQE.DsRed); ptc-Gal4, HA-dpp/HA-dpp; UAS/LexAop-HA trap/+			
Fig. 3k, r: yw; nub-Gal4, HA-dpp/HA-dpp			
Fig. 31, s: yw; nub-Gal4, HA-dpp/HA-dpp; UAS/LexAop-HA trap/+			
Fig. 4a: hsFLP/5xQE.DsRed; HA-dpp, tkv ^{a12} FRT40/HA-dpp, UbiGFP, FRT40, ptc-Gal4;			
UAS/LexAop-HA trap/+			
Fig. 4b: hsFLP/5xQE.DsRed; tkv ^{a12} FRT40/UbiGFP, FRT40			
Fig. 4c, d: hsFLP/5xQE.DsRed; tkvHA ^{FO} /tkvHA ^{FO}			
Fig. 4e, f: (internal control within a cross) 5xQE.DsRed/+; (dpp ^{FO} , ci-Gal4)/(dpp ^{FO}); (UAS-			
FLP)/tubGal80ts,			
Fig. 4g, h: 5xQE.DsRed/+; dpp ^{FO} , ci-Gal4/dpp ^{FO} ; UAS-FLP/tubGal80ts			
Fig. 5b: (left) yw; ptc-Gal4, Ollas-HA-dpp/+, (right) yw; ptc-Gal4, Ollas-HA-dpp/+; UAS/LexAop-			
Dpp trap/+			
Fig. 5c: yw; ptc-Gal4, HA-dpp/+			
Fig. 5d: yw; ptc-Gal4, HA-dpp/+; UAS/LexAop-Dpp trap/+			
Fig. 5k, r: <i>yw; nub-Gal4, HA-dpp/</i> +			
Fig. 51, s: yw; nub-Gal4, HA-dpp/+; UAS/LexAop-Dpp trap/+			
Fig. 6a, c: (y)w; ($5xQE.DsRed$); dpp^{d8}/dpp^{d12}			
Fig. 6b, d: $(y)w$; $(5xQE.DsRed)$; dpp^{d8}/dpp^{d12} ; dpp -Gal4/UAS-tkvQD			
Fig. 6f: (5xQE.DsRed); dpp^{d8} , UAS-FLP/dpp ^{d12} , act>Stop, y+>LexA ^{LHG} ; dpp -Gal4/LexAop-tkvQD			
Fig. 7c: yw ; $dpp-T2A$ -Gal4, $Dp(2;2)DTD48(dpp+)/+$; $P\{w[+mC]=UAS$ -RedStinger $\}6$,			
$P\{w[+mC]=UAS-FLP.Exel\}3, P\{w[+mC]=Ubi-p63E(FRT.STOP)Stinger\}15F2/+$			
Fig. 7e-h: yw M{vas-int.Dm}zh-2A; dpp-T2A-d2GFP-NLS/Cyo, P23			
Fig. 7i-l: yw			
Fig. 8a-c: ptc-Gal4, dpp ^{FO} /+; tubGal80ts/UAS-FLP, act5C(FRT.polyA)lacZ.nls			
Fig. 8d-h: ptc-Gal4, dpp ^{FO} /dpp ^{FO} ; tubGal80ts/UAS-FLP, act5C(FRT.polyA)lacZ.nls			
Fig. 8i-j: ci-Gal4, dpp ^{FO} /dpp ^{FO} ; tubGal80ts/UAS-FLP, act5C(FRT.polyA)lacZ.nls			
Supplementary Fig. 1a, e: <i>ptc-Gal4/</i> +			
Supplementary Fig. 1b, f: ptc-Gal4/+; UAS/LexAop-HA trap/+			
Supplementary Fig. 2a, c, e, g, i: HA-dpp/HA-dpp, ci>+ (left) and HA-dpp/HA-dpp, ci>HA trap			
(right)			
Supplementary Fig. 2k, m, o, q, s: <i>HA-dpp/+, ci>+</i> (left) and <i>HA-dpp/+, ci>Dpp trap</i> (right)			
Supplementary Fig. 3a: nub-Gal4, ptc-Gal4, HA-dpp/HA-dpp (control),			
Supplementary Fig. 3b: nub-Gal4, ptc-Gal4, HA-dpp/HA-dpp; UAS/LexAop-HA trap/+			
Supplementary Fig. 4a: <i>ptc-Gal4, HA-dpp/HA-dpp</i>			
Supplementary Fig. 4b: ptc-Gal4. HA-dpp/HA-dpp: UAS/LexAop-HA trap/+			

Supplementary Fig. 4c: nub-Gal4, HA-dpp/+; UAS/LexAop-Dpp trap/+,

Supplementary Fig. 4e: nub-Gal4, HA-dpp/HA-dpp; UAS/LexAop-HA trap/+,

Supplementary Fig. 4f: nub-Gal4, HA-dpp/HA-dpp; UAS/LexAop-HA trap/UAS-p35

Supplementary Fig. 4h: nub-Gal4, HA-dpp/+; UAS/LexAop-Dpp trap/+

Supplementary Fig. 4i: nub-Gal4, HA-dpp/+; UAS/LexAop-Dpp trap/UAS-p35

Supplementary Fig. 5a, b: (control within the cross) 5xQE.DsRed/+; (tkvHA^{FO}, ci-Gal4)/(tkvHA^{FO}); (UAS-FLP)/tubGal80ts

Supplementary Fig. 5c, d: 5xQE.DsRed/+; tkvHA^{FO}, ci-Gal4/tkvHA^{FO}; UAS-FLP/tubGal80ts

Supplementary Fig. 5e, f: (control within the cross) 5xQE.DsRed/+; (tkvHA^{FO})/(tkvHA^{FO}); +/Hh-Gal4, tubGal80ts

Supplementary Fig. 5g, h: 5xQE.DsRed/+; tkvHA^{FO}/tkvHA^{FO}; UAS-FLP/Hh-Gal4, tubGal80ts

Supplementary Fig. 6a: (control within the cross) 5xQE.DsRed/+; $(tkvHA^{FO})/tkvHA^{FO}$; (Hh-Gal4)/+

Supplementary Fig. 6b: (experiment) 5xQE.DsRed/+; tkvHA^{FO}/tkvHA^{FO}; Hh-Gal4/UAS-FLP

Supplementary Fig. 7a: 5xQE.DsRed/+, dpp^{d8} or $dpp^{d12}/+$

Supplementary Fig. 7b: 5xQE.DsRed/+; dpp^{d8}/dpp^{d12}

Supplementary Fig. 7c: 5xQE.DsRed, brk^{XA}/Y, dpp^{d8} or dpp^{d12}/+

Supplementary Fig. 7d: 5xQE.DsRed, brk^{XA}/Y, dpp^{d8}/dpp^{d12}

Supplementary Fig. 8a: Ollas-HA-dpp, ptc-Gal4/+

Supplementary Fig. 8b: Ollas-HA-dpp, ptc-Gal4/+; UAS/LexAop-C9/+

Supplementary Fig. 8d, h: *ptc-Gal4/*+

Supplementary Fig. 8e, i: *ptc-Gal4/+; UAS/LexAop-C9/+*

Supplementary Fig. 9a: *yw; ptc-Gal4, HA-dpp/*+ (identical disc as Fig. 5c)

Supplementary Fig. 9b: *yw; ptc-Gal4, HA-dpp/+; UAS/LexAop-Dpp trap/+* (identical disc as Fig. 5d)

Supplementary Fig. 9c, d: *dpp^{FO}/+; UAS-FLP/tubGal80ts*

Supplementary Fig. 9e: *dpp^{FO}*, *ci-Gal4/dpp^{FO}*; *UAS-FLP/tubGal80ts*

Supplementary Fig. 10a: (control) ptc-Gal4, HA-dpp/+,

Supplementary Fig. 10b: (Dpp trap) ptc-Gal4, HA-dpp/+; UAS/LexAop-Dpp trap/+

Supplementary Fig. 10c: (HA trap) ptc-Gal4, HA-dpp/HA-dpp; UAS/LexAop-HA trap/+

Supplementary Fig. 11: *yw M{vas-int.Dm}zh-2A; dpp-T2A-d2GFP-NLS/Cyo, P23*

Supplementary Fig. 12: (control) *ptc-Gal4*, *HA-dpp/HA-dpp*; *tubGal80ts/+*, (experiment) *ptc-Gal4*, *HA-dpp/HA-dpp*; UAS/LexAop-HA trap/tubGal80ts

Supplementary Fig. 13: (control) *tkvHA^{FO}/+; UAS-FLP/tubGal80ts*, (experiment) *tkvHA^{FO}, ci-Gal4/tkvHA^{FO}; UAS-FLP/tubGal80ts*

SUPPLEMENTARY TABLE 2

Primer lists to determine the orientation of the *dpp* genomic fragment insertion.

S25	mCherry-AgeI-F	CCACCGGTCGCCACCATGGTGAGCAAGGGCGA
S85	Dpp mimic-F1	GCGGCCGCCCAAGATCGACCGCTCC
S86	Dpp mimic-R1	CGCGGTGCACAAAAGCCTAGGCGGATGGC

S25/S86 for the right orientation. S25/S85 for the wrong orientation.