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Supplementary Materials and Methods 
 
Chemicals and materials used for MS-based proteomic experiments 

Tris-HCl, Tris(2-carboxyethyl)-phosphine (TCEP), sodium deoxycholate (SDC), 

trifluoroacetic acid (TFA) and trypsin were purchased from Sigma-Aldrich (Steinheim, 

Germany). LysC was obtained from Wako (Neuss, Germany). Formic acid (FA) was purchased 

from Merck (Darmstadt, Germany). Acetonitrile (ACN) was acquired from Biosolve 

(Valkenswaard, The Netherlands). The Oasis PRiME HLB plate was purchased from Waters 

(Etten-Leur, the Netherlands). Milli-Q water was produced by an in-house system (Millipore, 

Billerica, MA). For non-MS-based proteomics experiments, common chemicals were 

purchased from Sigma Aldrich. 

 

Antibodies and cell lines 

The commercially available therapeutics Herceptin© and Opdivo© were obtained from 

Genentech. Antibodies for western blotting included mouse anti-ST6GAL1 mAb (Invitrogen 

Cat. No. MA5-11900), mouse anti-GAPDH (Santa Cruz Cat. No. sc-32233), and goat anti-

mouse IgG AP (Sigma Cat. No. A3562). Adherent HEK293 cells (ATCC® CRL-1573™) were 

used for first-generation virus production. The cell line 116, used for gutless virus production,1 

was kindly provided by Philip Ng (Baylor College of Medicine, Houston). HT1080 cells that 

overexpress the fibroblast activating protein α (FAP) were kindly provided by Christian Münz 

(University of Zurich). The cell lines HEK293-F (Thermo Fisher: R79007), CHO-S (Thermo 

Fisher: R80007), A549 (ATCC® CCL-185™), SKBR3 (ATCC® HTB-30™), BT474 

(ATCC® HTB-20™), and Detroit-551 (ATCC® CCL-110™), were obtained from the indicated 

vendor. All cell lines were cultivated according to the provider’s recommendations, and cells 

were passaged no higher than 15 times from the original stocks. 

 

Antibody cloning: 

N-terminal flanking DNA of all antibodies contained a NheI restriction site followed 

by a mammalian Kozak consensus sequence (gccRccAUGG); the C-terminal flanking DNA 

contained two stop codons followed by a XhoI restriction site for subcloning. The plasmids for 

first-generation adenovirus production were modified from the AdEasy Adenoviral Vector 

System kit (Agilent Cat. No 240009) as follows: (a) The multiple cloning site (MCS) of the 

first-generation adenovirus cloning plasmid pShuttle was replaced via Gibson Assembly (New 

England Biolabs) with a designed synthetic cassette with the following elements into which 
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the antibody constructs were inserted: CMV_promoter-NheI_restriction_site-

XhoI_restriction_site-EMCV_IRES-eGFP-BGH_PolyA. (b) The plasmid containing the 

adenoviral genome, pAdEasy-1, was modified by the integration of a mutation into the 

hypervariable loop 7 (HVR7) of the hexon that prevents blood factor X binding and thus 

reduces liver infection, as previously described.2 

 

 

Infectious particles determination: 

24-well plates were seeded with 50,000 A549 cells per well 24 hours prior to infection 

in 0.5 mL DMEM medium supplemented with 10 % fetal calf serum (Animed Lot 2-01-F30-

1). Purified virus solution was added to the cell medium (3 µL per well), and cells were 

incubated at 37°C, 5% CO2 for 2 hours before harvest. Following incubation, the virus-

containing medium was aspirated, and cells were washed with 1 ml PBS per well. The viral 

genomes were extracted from cells using a Genekam DNA isolation kit (SB0072) according to 

the manufacturer’s protocol. Adenoviral genome numbers were determined by quantitative 

PCR with adenovirus serotype-5-specific primers (0.5 µM each): Ad_fwd: 5’-

GTGATAACCGTGTGCTGGAC-3’ and Ad_rev: 5’-CAGCTTCATCCCATTCGCAA-3’ as 

well as a sequence-specific Hex labeled probe: 5’-TCCGCGGCGTGCTGGACAGG-3’. The 

reaction was carried out in 20 µL using IDT PrimeTime® Gene Expression Master Mix (Cat#: 

1055770) and a Stratagene Mx3005P (Agilent) instrument with the following program: 10 min 

at 95°C, 0.5 min at 95°C, 1 min at 56°C and 1 at 72°C for 50 cycles, each cycle starting at the 

second step with DNA quantification after the third step. Ct values were determined by the 

MxPro Mx3005P software using a single threshold mode. 

 

Western blotting: 

Cell lines were grown to confluency (80-100%) and lysed in 1X Cell Culture Lysis 

Reagent (Promega Ref. No. E1531) containing 60 mM DTT and a cocktail of protease 

inhibitors (4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF), 48 µg/mL; pepstatin-A, 1 

µg/mL; and leupeptin, 5 µg/mL). Laemmli sample buffer was added to 1X (Bio-Rad Cat. No. 

161-0747), and samples were heated to 99°C for 10 minutes. For each cell lysate, 15 µg total 

protein was loaded into each well of a Criterion TGXTM Precast Midi Protein Gel (4-20%, Bio-

Rad Cat. No. 5678095) in 1x TGX buffer (Bio-Rad Cat. No. 161-0772), then transferred on to 

an Immobilon-P PVDF transfer membrane (Merck Cat. No. IPVH00010) using a Bio-Rad 

Trans-Blot Turbo Transfer system (2.5 A, 7 min). The membrane was blocked in 1X Sigma 
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Casein Blocking Solution (Sigma Cat. No. B6429) in TBS buffer (20 mM Tris, 150 mM NaCl, 

pH 7.5) for 30 min at room temperature with gentle orbital shaking. After blocking, the 

membrane was cut at approximately 40 kDa, and incubated with either a mouse anti-ST6GAL1 

mAb (1:1,000; top piece) or a mouse anti-GAPDH mAb (1:3,000; bottom piece) in antibody 

dilution buffer (1X Sigma Casein Blocking Solution in TBS-T buffer) for 12-16 hours at 4°C 

with gentle orbital shaking. Membranes were washed 4X over 20 minutes with TBS-T (1X 

TBS with 0.05% Tween-20), then incubated with a goat anti-mouse IgG AP-conjugated 

antibody (1:10,000) in antibody dilution buffer for 1 hour at room temperature. Membranes 

were washed 4X over 20 minutes with TBS-T, then imaged on a Vilber Fusion Fx Spectrometer 

after addition of CDP-Star® Chemiluminescent Substrate (Sigma Cat. No. C0712). 

 

 
EM measurements: 

Prior to imaging, Zeba Spin Desalting Columns (7K MWCO, Thermo Scientific Cat. 

No. 89877) were used to exchange the adenoviral storage buffer into 20 mM HEPES, 150 mM 

NaCl, pH 6.8. Viral particles were irradiated under a UV light for 1 min, then samples were 

negative stained by spotting 10 µL droplets on copper grids (300 mesh, glow discharged) for 1 

min, then overlaid with 10 µL droplets of 1% uranyl acetate for 1 min. The excess uranyl 

acetate was removed with filter paper, and the grid was allowed to air dry.  Grids were 

examined with a CM100 transmission electron microscope (Thermo Fisher Scientific, 

Eindhoven, The Netherlands) at an acceleration voltage of 80 kV using an Orius 1000 digital 

camera (Gatan, Munich, Germany). Samples were prepared and imaged at the Center for 

Microscopy and Image Analysis (ZMB) at the University of Zurich. 

 
Enzyme-linked immunosorbent assay (ELISA) 

Following antibody production, described in the online methods section Antibody 

production of the main text, cell supernatants were filtered through a 0.2 µm filter and stored 

at -20 °C. Nunc MaxiSorp flat-bottom plates (Thermo Fisher Cat. No. 44-2504-21) were 

washed in PBS and then coated with 100 µL per well of 20 nM HER2 extracellular domain 

(Sino Biological Cat. No. 10004-HOSH) or 100 nM PD1 (Acro Biosystems Cat. No. PD1-

H5221) for 12-16 hours at 4°C with gentle rocking. Following coating, plates were blocked in 

5% nonfat dry milk (Applichem Cat. No. A0830) made in PBS for 1 hour at 25°C with gentle 

rocking.  Plates were washed five times with PBS-T (1X PBS pH 7.4 + 0.1% Tween) using a 

Biotek ELx405 plate washer (each cycle: aspirate, shake for 5 s at intensity level 3, soak for 15 
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s), then standards (Herceptin or Opdivo in PBS), blanks or cell culture supernatants (at 1:5 

and/or 1:50 in PBS) were added in triplicate in 100 µL volumes per well. Samples were 

incubated at 25°C for 1.5-2 hours with gentle rocking, and then plates were washed five times 

as before. For detection, goat anti-human Fc-AP (Sigma Cat. No. A9544) was diluted 1:2,000 

in 2% nonfat dry milk made in PBS-T and 100 µL was added to each well. Plates were 

incubated at 25°C for 1 hour with gentle rocking, then washed 5-times as before. Signal was 

detected following addition of 100 µL/well 3 mM para-nitrophenyl-phosphate (4-NPP) 

substrate in 4-NPP buffer (50 mM NaHCO3, 50 mM MgCl2) by reading absorbance at 405 nm 

using 540 nm as a reference wavelength after approximately 20 minutes of incubation at 25°C. 

Absorbance was normalized to the reference wavelength and blank wells, and concentrations 

were determined by interpolation of a corresponding standard curve using a sigmoidal 4-

parameter logistic fit [Sigmoidal, 4PL, X is log(concentration)] using Graphpad Prism 8 

software for each reading.  

 

Native MS data analysis 

Raw spectra were deconvoluted to zero-charge spectra by Intact Mass software3 

(Protein Metrics, CA, USA) using default settings. The mass range and m/z range were adjusted 

to display all glycoproteoform signals. For PTM annotations, average masses were used, 

including hexose/mannose/galactose (Hex/Man/Gal, 162.1424 Da), N-acetylhexosamine/N-

acetylglucosamine (HexNAc/GlcNAc, 203.1950 Da), fucose (Fuc, 146.1430 Da), and N-

acetylneuraminic acid (Neu5Ac, 291.2579 Da). All symbols used and nomenclature follows 

the recommendations of the Consortium for Functional Glycomics.4 Based on the known 

backbone masses of IgG samples (trastuzumab and nivolumab), the biosynthetic pathway of 

N-glycosylation, and data obtained from glycopeptide analysis, a matrix of possible 

glycoproteoforms was constructed. We made use of an in-house developed R script for semi-

automated peak annotation as described previously.5 In short, we first generated a library of 

proteoforms with specific masses and probability ranks using data (masses and relative 

intensities) derived from the peptide-centric analysis. All proteoform mass combinations were 

ranked according to the intensity of the detected PTM peptides from which they were 

constructed, and the match between their theoretical and experimental masses. The masses of 

peaks were then matched to the generated library with the highest-ranked proteoforms. The 

generated lists of proteoforms were manually inspected further and filtered to obtain the most 

meaningful PTM compositions for each detected proteoform. This allowed us to visualize 

probable proteoforms in the native mass spectra with their tentative PTM composition. For 
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estimation of quantities of the major proteoforms, peak intensities from zero-charge 

deconvoluted spectra were obtained directly from Intact Mass Software. 

 

Flow cytometry analysis: 

For flow cytometry analysis 1.0 x 104 HEK293 cells were seeded per well in a 96-well 

plate one day prior to treatment. Cell infections were performed in triplicates for conditions 

using different dilutions (0, 1, 5 or 10 infectious particles per cell) of trastuzumab or nivolumab 

first-generation adenoviral vectors, encoding GFP transcriptionally coupled to antibody 

expression via an IRES domain. Cells were harvested 48 hours post-transfection by flushing 

cells of the Petri dish in the culture medium. Subsequently, cells were harvested by 

centrifugation for 1 min at 800 g at RT. Harvested cells were washed twice with ice-cold 1% 

PBS/BSA and resuspended in a volume of 120 µL 1% PBS/BSA for analysis. GFP-reporter 

expression was monitored on an LSR II Fortessa flow cytometer counting 2,000 - 5,000 single 

gated cell events per sample. For GFP detection, the Alexa 488 channel was used, and obtained 

data were analyzed using the software FCS Express 5 Flow and Prism 5 (GraphPad). 

 

LC-MS and MS/MS analysis 

All peptides (300 fmol of IgG peptides), measured in triplicates, were separated and 

analyzed using an Agilent 1290 Infinity HPLC system (Agilent Technologies, Waldbronn, 

Germany) coupled in-line to an Orbitrap Q exactive HF mass spectrometer (Thermo Fisher 

Scientific, Bremen, Germany). Reversed-phase separation was accomplished using a 100 µm 

inner diameter, 2 cm trap column (in-house packed with ReproSil-Pur C18-AQ, 3 µm) (Dr. 

Maisch GmbH, Ammerbuch-Entringen, Germany) coupled to a 50 µm inner diameter, 50 cm 

analytical column (in-house packed with Poroshell 120 EC-C18, 2.7 µm) (Agilent 

Technologies, Amstelveen, The Netherlands). Mobile-phase solvent A consisted of 0.1% 

formic acid in water, and mobile-phase solvent B consisted of 0.1% formic acid in acetonitrile. 

The flow rate was set to 300 nL/min. A 66 min gradient was used as follows: 0-5 min, 100% 

solvent A; 13-44% solvent B within 35 min; 44-100% solvent B within 3 min; 100% solvent 

B for 5 min; 100% solvent A for 17 min. For the MS scan, the mass range was set from 375-

2,000 m/z at a resolution of 60,000, and the automatic gain control (AGC) target was set to 

3×106. For the MS/MS measurements, higher-energy collision dissociation (HCD) was used 

and performed with a normalized collision energy of 30%. For the MS/MS scan, the mass range 

was set from 200-2,000 m/z at a resolution of 30,000; the AGC target was set to 1×104. The 

precursor isolation width was 1.4 Da, and the maximum injection time was set to 150 ms. 
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LC-MS and MS/MS data analysis 

The raw data files containing MS/MS spectra of IgG peptides were processed using 

Byonic software (version 3.2.0) (Protein Metrics Inc.). The following parameters were used 

for data searches in Byonic: trypsin digestion with a maximum of 2 missed cleavages, precursor 

ion mass tolerance, 10 ppm; fragmentation type, HCD; fragment mass tolerance, 20 ppm; 

variable modifications: methionine oxidation. For glycan analysis, we used a Byonic database 

of 132 human glycans (Sup. Table 1). The maximum number of precursors per scan was set to 

one and the FDR as 1%. Only PSMs matched to HCD spectra with non-negligible error 

probabilities |log Prob|>4.0 and Byonic score >=200 were accepted for further manual data 

filtering. Inspection of the MS/MS data did not reveal evidence of N-glycolylneuraminic acid 

(m/z 209.087 or 308.098); therefore, sialylation was presumed to only occur in the N-

acetylneuraminic acid variant. The FASTA file used for the peptide searches contained 

trastuzumab and nivolumab amino acid sequences (Sup. Fig. 1-2). The software Skyline 

(version 4.2.0.18305) was used for site-specific relative quantification of the N-peptide 

glycoforms in the Fc region. Two major and one less frequent Fc region peptides, 

EEQYNSTYR, TKPREEQYNSTYR, and PREEQYNSTYR (trastuzumab), and 

EEQFNSTYR, TKPREEQFNSTYR, and PREEQFNSTYR (nivolumab), were used for 

relative quantification of IgG glycoforms. All glycoforms of these peptides annotated by 

Byonic were loaded into the Skyline software interface and their retention time, ppm error to 

the theoretical mass and isotopic pattern were checked. Curation criteria were as followed: (1) 

≤ 5 ppm error to the theoretical mass, (2) eluting within ± 1 min of the mean retention time for 

that peptide, (3) having no apparent overlapping isotopic patterns. The resulting list of 

glycopeptides with all their detected charge states was further used for relative quantification. 

The first three isotopes were taken from each manually validated peptide glycoform for the 

calculation of the peak areas. For each sample, peak areas of all glycoforms of all above-

described peptides with all detected charge states were summed up and set to 100%. The peak 

area calculated for each curated peptide glycoform was normalized to the total area of all 

glycoforms including naked peptide and thus, glycoform-relative abundances were obtained. 

The average peptide ratios from all measurements were taken as a final estimation of the 

abundance, and only glycoforms with relative abundance >0.5% were further considered. 

Additionally, we performed manual inspection of the resulting list of glycoforms by checking 

representative HCD MS/MS spectra of the glycoforms with amino acid sequence 

TKPREEQ(Y/F)STYR. Selected MS/MS spectra were checked for the presence of the group 
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of fragments with a mass difference pattern of 17-83-120, which is typical for the 

fragmentation of N-glycopeptides and serves for unambiguous confirmation of glycopeptide 

identity. Further manual sequencing of the glycan moiety provided more accurate glycan 

compositions of the final glycoform list. Here, reported glycan structures are depicted without 

the linkage type of the glycan units since our acquired MS/MS data do not directly provide 

such information. The resulting glycopeptide list with relative abundance was also later used 

in the processing of native spectra annotations and visualization of N-glycosylation patterns.  
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Supplementary Figures 
 
 

 
 
Figure S1. Amino acid sequence of the trastuzumab construct. The heavy chain (VH, CH1, 

CH2, CH3) is presented in dark red while the light chain (VL, CL) is presented in light red.  

The leader sequences of the heavy and light chains (green), the furin site (orange), and the 

ribosome skipping site F2A (black) are processed during antibody maturation. 
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Figure S2. Amino acid sequence of the nivolumab construct. The coloring of the nivolumab 

amino acid sequence is analogous to the one of trastuzumab in Supplementary Figure 1. Here, 

however, a P2A was used instead of an F2A site. 
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Figure S3. Homogenous expression of the trastuzumab and nivolumab antibodies. a,b) Size-

exclusion chromatography / multi-angle light scattering (SEC-MALS) analysis of nivolumab 

(a) and trastuzumab (b) produced by the furin/2A system (bottom panels) in CHO-S cells, 

following transient transfection, as compared to the corresponding commercial products (top 

panels). The design of the constructs is schematically shown in (c) and (d). Both the nivolumab 

P2A construct and the trastuzumab F2A construct led to a monodisperse protein peak 

comparable to the commercial products, Opdivo or Herceptin. The absence of higher molecular 

species indicates the correct processing of the signal sequences (shades of green), furin 

(orange), and 2A sites (black), which are post-translationally cleaved off. 
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Figure S4. Viral particle visualization and antibody expression levels of cancer cells upon viral 

vector gene expression. a) Purified first-generation adenoviral virions encoding trastuzumab or 

nivolumab were analyzed by TEM following negative staining, revealing high purity. b) Signal 
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from a GFP-reporter, which is transcriptionally coupled to antibody expression via an IRES 

domain, was used as a flow cytometry read-out for infection of HEK293 cells with different 

infectious viral particles (ivp)/ cell. Quantification was done in technical replicates (n=3) for 

each condition, and error bars represent SEM. c) The antibody concentration in the cell 

supernatant of all infected cell lines was determined by an antigen-capture ELISA, using either 

HER2 for trastuzumab or PD-1 for nivolumab as immobilized capture antigens. Error bars 

represent SEM for technical triplicates (n=3). Cell numbers, viral particle numbers, and 

retargeting adaptor concentration (used for HER2 positive MCF7, SKBR3 and BT474 cells) 

were kept consistent for all cell lines. While small relative differences in the expression levels 

of antibodies produced from different cell lines were observed, i.e., nivolumab produced from 

HEK compared to nivolumab produced from SKBR3 cells, no distinguishable differences were 

detected in the amount of either trastuzumab or nivolumab produced from the same cell line 

(except for MCF7).  
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Figure S5. Comparison of the glycosylation profiles of nivolumab and trastuzumab expressed 

from either transfected or adenovirus-infected CHO-S cells. Native mass analysis of the CHO-

S cell-expressed nivolumab (a) or trastuzumab (b) revealed only minor overall differences 

between antibodies produced from transfected or infected cells using either naked DNA 

(transfection) or a first-generation adenoviral vector (infection) for gene delivery. The most 

apparent difference was visible for trastuzumab expression, where antibody variants with a 

residual arginine (indicating incomplete carboxypeptidase digestion) could be detected in low 

amounts from CHO-S cells transfected with the trastuzumab expression plasmid, while none 

were present from virus-infected CHO-S cells. Conversely, low amounts of half-glycosylated, 

high-mannose forms of trastuzumab were detected in the virus-infected CHO-S samples, but 

not in the plasmid-transfected ones.   
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Figure S6. Glycosylation profiles of nivolumab and trastuzumab expressed in CHO and 

various human (cancer) cell lines. Trastuzumab (left panel) and nivolumab (right panel) 
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expressed from different cell lines (indicated in the upper left corner of each row) were 

analyzed by native mass spectrometry. In the top row for reference, the native MS spectra are 

shown of the two clinically used commercial products (Herceptin and Opdivo, respectively). 

The antibodies produced from cancer cells showed, in general, more complex glycosylation 

patterns than those produced in producer cell lines. Furthermore, SKBR3 and BT474 showed 

a higher abundance of partially and fully non-glycosylated antibody species. The relative 

abundances of quantified native mAb-species, as extracted from this data, can be found in 

Supplementary Table 2. 
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Figure S7. Illustrative example of the quantitative analysis of tryptic glycopeptides of 

trastuzumab produced in SKBR3 cells. (a) Averaged MS1 spectrum across the retention time 

window 15.50-17 min (m/z region of 900-1300) in which the N-glycopeptides with the amino 

acid sequence of TKPREEQYNSTYR eluted. (b) Chromatographic separation of two isobaric 

forms of the peptide glycoforms with two fucoses or one sialic acid, respectively. These 

extracted ion chromatograms of each peptide glycoforms were used for the relative 

quantification. (c) Typical fragmentation pattern of N-glycopeptides occurring within the first 

HexNAC of the glycan to the corresponding Asn residue. HCD type of fragmentation gives 

rise to a group of ions with a mass difference of 17-83-120, which were used for validation of 

glycopeptide identity and used for their unambiguous annotation. (d) HCD MS/MS spectra of 

the two glycopeptides from the isobaric precursors m/z 1074.7947 and 1074.4556. 

Characteristic oxonium ions originating from the fragmentation of the glycan of glycopeptides 

are detected in the lower m/z region. The middle part of the spectra shows the mass difference 
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patterns. The composition of the glycan moiety attached to a peptide backbone can be deduced 

from its sequential fragmentation.   
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Figure S8. Evaluation of the contribution of incompletely glycosylated antibodies produced 

by the different cell lines using native or peptide-centric MS data. Quantification of modified 

and non-modified glycopeptides in the peptide-centric analysis (black bars) validates the 

observations made by native MS (yellow bars).   
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Figure S9. Transcript levels of neonatal Fc receptor (FcRn), different Fcγ-receptors (FcγR-1A, 

FcγR-1B, FcγR-2A, FcγR-2B) and HER2 of cancer cell lines used in this study (HT1080, 

A549, MCF7, SKBR3, BT474). FcRn and FcγR transcripts are low compared to HER2 

receptor expression in HER2 positive cell lines (MCF7, SKBR3 and BT474 cells)  and did not 

correlate with non-glycosylated trastuzumab expressed from SKBR3 and BT474 cells. RNA 

transcript numbers were taken from the cancer cell line encyclopedia6,7 and are depicted as 

Transcripts Per Million (TPM). 
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Figure S10. Transcript levels of ST6Gal1 in the used cancer cell lines. Cells lines showing 

elevated levels of antibody sialylation in this study also previously showed increased transcript 

levels of α2-6 sialic acid transferase ST6Gal1 in other studies. RNA numbers were taken from 

the cancer cell line encyclopedia6,7 and are depicted as Transcripts Per Million (TPM). 
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Figure S11. Comparison of mannose and galactose profiles of the produced antibodies in the 

different cell lines. The amount of high mannose, G0, G1, G2, and terminal galactose (TG) was 

determined for nivolumab (left heatmap) and trastuzumab (right heatmap). No clear differences 

between the non-cancerous cell lines (lower panel) and the cancerous cell lines (upper panel) 

were observed.  
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