
1	
	

Supplementary	Information	for	

Computational Modeling of Designed Ankyrin Repeat Protein

Complexes with their Targets

	

Filip	Radom1,	Emanuele	Paci2	and	Andreas	Plückthun1	

1Department	of	Biochemistry,	University	of	Zurich,	Zurich,	Switzerland	

2Astbury	 Centre	 for	 Structural	 Molecular	 Biology,	 University	 of	 Leeds,	 Leeds,	 United	

Kingdom	

	

	

	

Andreas	Plückthun	

Department	of	Biochemistry,		

University	of	Zurich,		

8057	Zurich,	Switzerland	

Tel:	+41	44	635	5570	

FAX:	+41	44	635	5712	

Email:	plueckthun@bioc.uzh.ch	

	

2	
	

	

Fig.	S1.	Structures	of	 the	challenging	complexes	and	 the	structural	alignment	of	bound	

(green)	and	unbound	(magenta)	targets.	In	the	unbound	structure	of	BCL-W,	the	flexible	C-

terminus	adapts	a	helical	conformation	that	shields	the	DARPin’s	epitope;	PDB	ID:	4K5A,	

1MK3.	Two	helices	in	APH	spread	significantly	to	accommodate	the	DARPin;	PDB	ID:	2BKK,	

1J7I.	

	

3	
	

	

Fig.	S2.	(a)	Models	from	the	largest	cluster	after	clustering	within	5	Å	(grey)	aligned	to	the	crystal	

structure	(green).	The	center	of	the	cluster	is	in	black.	(b)	Models	from	the	largest	cluster	after	

further	clustering	within	2	Å	 (pink)	aligned	 to	 the	crystal	 structure	 (green).	The	center	of	 the	

cluster	 is	 in	magenta.	Further	clustering	 thus	removes	decoys	 that	are	more	remote	 from	the	

native	structure.	

4	
	

Table	ST1.	Discriminative	power	of	different	Rosetta	scores	and	the	

additional	featuresa	

Rosetta scores G3:HER2 3g124:GFP 44C12V5:IL4 K27:KRAS 3H10:PLK1

total_score 0b 0 0 0 0

I_sc 0 1 0 1 1

ddg 0 0 0 1 1

dG_separated 0 1 0 1 1

packstatstat 1 0 1 0 1

sc_value 0 0 0 1 1

Additional metricsc

packstat*dG_separated 0 1 1 1 1

score*I_sc 0 1 0 1 1

score*dG_separated 0 1 0 1 0

I_sc*packstat 0 1 1 1 1

I_sc*dG_separated 0 1 0 1 0

packstat*dG_separated*sc_value 1 1 0 1 1

packstat*sc_value 0 0 0 0 1

I_sc*packstat*sc_value 1 1 0 1 1

I_sc*packstat*ddG_separated*sc_value 0 1 0 1 1

I_sc*sc_value 0 1 0 1 1

packstat**2*dG_separated*sc_value (p2gs) 1 1 1 1 1
a Average scores of entire clusters (1000 decoys each) are compared.

b 1 if the score enables discrimination of the near-native cluster.

c Introduced by multiplying some Rosetta scores, i.e., considering them simultaneously.
	

5	
	

Table	ST2.	p2gs	scores	of	sets	of	decoys	derived	from	3	models	after	
sequential	clustering	

	

cluster numbera G3:HER2 3g124:GFP 44C12V5:IL4 K27:KRAS 3H10:PLK1 6G9:IL13 81:CathepsinB

1 -7.52b -6.43 -5.57 -6.56 -6.01 -4.58 -5.31

2 -7.16 -6.24 -4.76 -5.13 -5.47 -5.20 -5.30

3 -6.97 -5.83 -4.30 -4.28 -7.31 -3.62 -7.84

a Rank after sequential clustering.
b Lowest score corresponds to near-native cluster.

6	
	

Table	ST3.	Quality	of	top	models	sorted	by	p2gs	score	
	

rank
p2gs G3:HER2 3g124:GFP 44C12V5:IL4 K27:KRAS 3H10:PLK1 6G9:IL13 81:CathepsinB

1 0.57 / 10.45 / 3.39 0.33 / 14.58 / 4.94 0.62 / 3.70 / 1.68 0.38 / 9.22 / 3.19 0.75 / 8.01 / 3.00 0.57 / 5.70 / 2.68 0.40 / 11.63 / 3.05

2 0.69 / 3.51 / 1.97 0.48 / 9.82 / 2.90 0.56 / 3.66 / 1.61 0.30 / 12.24 / 5.27 0.79 / 5.89 / 1.94 0.66 / 2.23 / 1.75 0.51 / 8.50 / 2.75

3 0.69 / 3.44 / 2.08 0.46 / 12.70 / 3.70 0.66 / 2.22 / 1.41 0.62 / 7.50 / 2.50 0.81 / 5.49 / 1.82 0.69 / 2.73 / 1.96 0.76 / 6.09 / 2.54

4 0.71 / 2.90 / 1.92 0.63 / 8.78 / 2.43 0.60 / 3.85 / 1.65 0.48 / 9.11 / 3.33 0.79 / 5.23 / 1.93 0.66 / 2.12 / 1.75 0.73 / 6.27 / 2.18

5 0.63 / 3.37 / 2.02 0.76 / 3.70 / 1.42 0.46 / 5.11 / 2.43 0.42 / 8.54 / 3.17 0.64 / 10.13 / 2.30 0.60 / 4.04 / 2.04 0.71 / 6.41 / 2.23

6 0.67 / 2.88 / 1.93 0.33 / 13.93 / 4.75 0.40 / 6.34 / 2.62 0.55 / 7.48 / 3.69 0.51 / 9.84 / 2.48 0.69 / 2.17 / 1.93 0.02 / 18.33 / 6.84

7 0.67 / 3.42 / 1.93 0.83 / 4.78 / 1.51 0.29 / 8.61 / 4.18 0.85 / 3.05 / 1.79 0.83 / 4.38 / 1.61 0.69 / 2.55 / 1.97 0.53 / 7.51 / 3.16

8 0.75 / 3.64 / 1.98 0.87 / 1.86 / 1.29 0.65 / 3.60 / 1.58 0.90 / 2.54 / 1.70 0.83 / 5.65 / 1.78 0.71 / 3.12 / 1.97 0.76 / 6.39 / 2.53

9 0.47 / 12.18 / 3.88 0.91 / 4.00 / 1.51 0.65 / 1.80 / 1.42 0.50 / 9.40 / 3.26 0.77 / 9.07 / 3.16 0.64 / 3.16 / 1.95 0.80 / 5.74 / 2.31

10 0.63 / 3.25 / 1.99 0.33 / 14.00 / 4.00 0.41 / 6.10 / 2.71 0.77 / 4.53 / 2.07 0.81 / 4.88 / 1.76 0.74 / 3.03 / 2.06 0.89 / 3.21 / 1.17

a f(nat) / L-RMSD / I-RMSD. Highest value of f(nat) and lowest values of L-RMSD and I-RMSD among top 10 are underlined.
f(nat) — fraction of native residue-residue contacts; calculated with 5 Å cut-off. L-RMSD — ligand RMSD; calculated on the DARPin backbone after fitting on the
target. I-RMSD — interface RMSD; calculated on backbone atoms of all residues within 10 Å of the partner molecule.

CAPRI quality criteria:

High quality: f(nat) ≥ 0.5 AND (L-RMSD ≤ 1.0 OR I-RMSD ≤1.0)

Medium quality: f(nat) ≥ 0.3 AND (1.0 < L-RMSD ≤ 5 OR 1.0 < I-RMSD ≤2.0)

Acceptable quality: f(nat) ≥ 0.1 AND (5 < L-RMSD ≤ 10 OR 2 < I-RMSD ≤4)
	

7	
	

Table	ST	4.	Bound	docking	in	ClusPro	

DARPin:target PDB ID
(chains)

 Rank of first near-native
(< 10 Å L-RMSD) Additional remarks

G3:HER2 4HRN (BC) 2

3g124:GFP 5MA6 (AB) 3

44C12V5:IL4 4YDY (AI) 1

K27:KRAS 5O2S (AB) 1

3H10:PLK1 2V5Q (BC) 1

6G9:IL13 5KNH (DI) 1

81:CathepsinB 5MBL (AB) 3

D12:BCL-W 4K5A (AB) 2

AR_3a:APH 2BKK (CD) 1

9.29:HER2 4HRL (AC) 4

A-C2:tubulin 5EYP (BF) 9 >400 aa target

D7.18:caspase7 4LSZ (CDF) 3 Dimer. Monomer with repulsive
restraints

was considered 1D5:NEMO CC2-LZ 2V4H (ABC) 1 Binding to dimer. Dimer receptor used
for docking

1D3:knob 4ATZ (AD) — Rank #1 was 12 Å off

off7:MBP 1SVX (AB) —

8.4:caspase8 2Y1L (CDEG) — Dimer. Monomer with repulsive
restraints

was considered E2_79:IgE Fc 4GRG (AD) — Dimer. Monomer with repulsive
restraints

was considered
	

	

	

8	
	

Supplementary	Methods	

Generation	of	templates	for	DARPin	modeling	

Two	molecules	of	N3C	consensus	DARPin	(2QYJ	or	2XEE)	were	loaded	into	Pymol	and	

repeat	 3	 without	 the	 terminal	 residue	—	 because	 it	 differs	 in	 the	 last	 repeat	 of	 the	

consensus	DARPin	from	other	repeats	—	of	molecule	2	was	aligned	to	the	corresponding	

residues	in	repeat	2	of	molecule	1	(all-atom).	Coordinates	of	N-cap	+	repeat	1	of	molecule	

1	 and	 repeat	 3	 +	 C-cap	 of	molecule	 2	were	 saved	 separately	 and	 combined	 into	 one	

molecule	with	 Chimera	 software.	 Chains	were	 renamed	 and	 renumbered	 accordingly.	

The	peptide	bond	between	Lys-Asp	was	automatically	recognized.	

	 	

9	
	

Protocol for modeling of DARPin-target complexes

Homology modeling of a DARPin

1. Identify	the	type	of	DARPin	to	be	modelled	(number	of	internal	repeats,	type	of	

C-cap)	[1-3].	

2. Choose	the	corresponding	PDB	template	file	for	modeling	(2QYJ	for	an	N3C	

DARPin	with	the	original	C-cap,	2XEE	for	an	N3C	DARPin	with	the	Mut5	cap,	or	

corresponding	templates	for	N2C	DARPins	(all	available	both	in	DARPin_fixbb	

and	DARPin_remodel).	

	

In	most	cases	only	substitution	mutations	will	be	necessary,	which	will	be	done	

with	fixed	backbone	design	application	[4],	described	in	section	3	A	.	If	a	DARPin	

contains	insertions	or	deletions,	move	to	section	3	B	and	use	the	remodel	

tool	[5].		

3. A.	Only	mutations	in	DARPin	template	are	necessary:	

	

i. Modify	<template>.resfile	in	DARPin_fixbb	to	introduce	required	mutations:	

	

Example:	

30 D NATRO

31 D PIKAA E

32 D NATRO

Here	residues	30	and	32	of	chain	D	remain	unchanged	(NATRO:	natural	rotamer)	

and	residue	number	31	will	be	mutated	to	glutamic	acid	(E)	(PIKAA:	pick	any	

amino	acid	in	a	single-letter	code).	

	

ii. Run	Rosetta	fixbb:	

fixbb.linuxgccrelease\

-in:file:s ./<template>.pdb\

-out:path:all ./rosetta_output\

-resfile <template>.resfile\

-use_input_sc\

-ex1\

10	
	

-ex2\

-minimize_sidechains\

-nstruct 1

Note	that	the	Rosetta	numbering	of	the	sequence	begins	with	residue	1,	e.g.,	the	

N-terminal	Asp	13	(D13)	will	be	thus	considered	as	Asp	1.	The	templates	are	

renumbered	to	match	this	scheme.	We	recommend	to	align	the	sequence	of	the	

produced	model	to	the	desired	sequence	to	make	sure	that	all	the	intended	

mutations	were	introduced	correctly.	

	

B.	Alternative:	Making	insertions	and/or	deletions	in	DARPin	

	

i. Modify	the	blueprint	file	<template>.remodel	to	introduce	required	

mutations:	

	

Example:	

30 A .

31 K . PIKAA R

32 W D PIKAA W

34 G D PIKAA Q

36 Y . PIKAA T

Here	residue	33	will	be	deleted.	Residue	32	will	be	remodelled	(side	chain	and	

backbone	angles)	but	not	mutated,	residue	34	will	be	remodelled	and	mutated,	

and	residues	31	and	36	will	be	mutated	but	the	backbone	will	stay	fixed.	Residue	

30	will	remain	unchanged.	We	recommend	to	allow	remodeling	of	3	residues	

that	flank	the	insertion/deletion	site.	D	before	PIKAA	allows	modeling	any	

secondary	structure.	We	found	this	option	better	than	forcing	modeling	loops	or	

helices.	

	

Rosetta	remodel	can	also	be	used	for	substitution	mutations	only,	as	an	

alternative	to	fixbb	(although	we	have	not	done	this	for	our	cases).		

	

11	
	

ii. Run	the	Rosetta	remodel:	

remodel.linuxgccrelease\

-in:file:s ./<template>.pdb\

-out:path:all ./rosetta_output\

-run::chain D\

-remodel:blueprint <template>.remodel\

-use_input_sc\

-ex1\

-ex2\

-nstruct 30

iii. List	the	produced	models	

ls -d $PWD/<models>* > files.txt

iv. Cluster	the	models	with	Rosetta	cluster:	

custer.linuxgccrelease\

-in:file:l files.txt\

-in:file:fullatom\

-cluster:radius 0.2\

-run:shuffle

v. Select	best-scoring	(lowest-energy)	model	from	the	largest	cluster.	

	

4. Refine	the	produced	model	with	Rosetta	relax:	

relax.linuxgccrelease\

-in:file:s ./<model>.pdb\ #output from fixbb/remodel

-in:file:fullatom\

-out:path:all ./rosetta_output\

-out:file:scorefile output.sc\

-out:file:silent output.out\

-nstruct 40\

-relax:thorough

5. Cluster	the	models	with	Rosetta	cluster:	

12	
	

cluster.linuxgccrelease\

-in:file:silent output.out

-in:file:fullatom

-cluster:radius 0.3

-run:shuffle

6. Select	the	best	scoring	model	(lowest	energy)	from	the	largest	cluster.	

Receptor modeling

1. Identify	the	unbound	structure	of	the	receptor	in	the	Protein	Data	Bank.	

If	more	than	one	structure	exist,	choose	the	one	that	is	most	complete,	

unliganded	and	at	best	resolution.	Most	small	ligands	do	not	usually	affect	the	

structure.	

2. Prepare	the	structure	for	modeling	in	Rosetta	

grep "^ATOM" <receptor>.pdb > <receptor>.clean.pdb

Then	in	Pymol:	

alter (all),resi=str(int(resi)-<identifier_of_first_res> + 1)

#renumber for Rosetta

alter (all), chain ='A' #rename chain to A

3. Relax	the	structure	with	all-heavy-atom	constraints.	

relax.linuxgccrelease\

-in:file:s ./<receptor>.clean.pdb\

-in:file:fullatom\

-out:path:all ./rosetta_output\

-out:file:scorefile output.sc\

-nstruct 1\

-ex1\

-ex2\

-use_input_sc\

-flip_HNQ\

-no_optH false\

-relax:constrain_relax_to_start_coords\

13	
	

-relax:coord_constrain_sidechains\

-relax:ramp_constraints false\

-ignore_zero_occupancy false

This	step	relaxes	the	structure	into	the	Rosetta	energy	function,	i.e.,	bond	

geometries	that	score	particularly	poor	in	Rosetta	are	idealized,	i.e.,	those	bond	

lengths	and	angles	are	set	to	values	that	are	statistically	more	frequent	in	

proteins	(according	to	the	rotamer	library).			

4. Run	Rosetta	backrub	on	the	entire	receptor:	

backrub.mpi.linuxgccrelease\

-in:file:s ./<receptor>.clean_0001.pdb\ #relaxed receptor

-in:file:fullatom\

-out:file:scorefile receptor.backrub250.sc\

-nstruct 250\

-backrub:ntrials 10000\

This	step	generates	ensembles	over	the	entire	structure	of	the	receptor.		

	

The	calculation	can	be	accelerated	using	the	Message	Passing	Interface	(MPI)	on	

multiple	processor	cores.	The	command	then	begins	with:	

mpiexec/mpirun -np <number_of_cores>

5. Rename	the	generated	models	(250	in	this	case)	with	the	Python	script	provided	

in	the	Supplementary	Files:	

python rename.py

6. Load	the	renamed	models	into	a	Pymol	session,	together	with	the	relaxed	

receptor	from	point	3	and	run	the	pymol_rmsf.py	script	provided	in	the	

Supplementary	Files	within	Pymol:

run pymol_rmsf.py

then	call	functions:	fit_unbound,	dev_fragment with	the	arguments	described	

within	the	script.	

14	
	

fit_unbound aligns	all	ensembles	to	the	input	receptor. dev_fragment	will	

output	standard	deviation	of	RMSD	(called	root	mean	square	fluctuation;	RMSF)	

along	segments	of	the	protein	chain	(by	default,	segments	are	3	amino	acid	long).	

A	calculation	of	a	single	RMSD	value	in	Pymol	takes	~0.5	s,	so	a	full	calculation	

may	take	up	to	several	hours	(e.g.,	for	100	residue	protein,	calculating	all	

possible	3-residue	segments	for	all	250	ensembles	takes	~4	h).		

7. Consider	segments	of	RMSF	>	0.2	Å	as	flexible.	

8. Run	Rosetta	backrub	on	the	flexible	loops	of	the	receptor:	

backrub.mpi.linuxgccrelease\

-in:file:s ./ receptor.clean.relaxed.pdb\

-in:file:fullatom\

-out:file:scorefile receptor.backrub_loop.sc\

-nstruct 20\

-backrub:ntrials 10000\

-pivot_residues <flexible_residues> #here put numbers of flexible

residues

9. Select	20	generated	loop	ensembles	for	the	next	step.	

	

Remarks:	

Rosetta	backrub	outputs	the	best	scoring	poses	within	a	number	of	backrub	

trials	(models	ending	with	_0001	or	_low)	or	last-sampled	poses	(ending	with	

_last).	Use	_last	poses	in	order	to	retain	more	diverse	conformations.	

Rigid-body docking with ClusPro and sequential clustering

1. Register	on	https://cluspro.bu.edu/	

2. Start	a	new	job	for	each	of	the	receptor	loop	ensembles	(20	in	total):	

1. Upload	PDB	files	for	the	receptor	and	the	ligand	(the	latter	is	always	the	same	

DARPin	model,	only	the	receptor	inputs	are	varied)	

2. In	the	menu	Attraction	and	Repulsion	add	repulsive	constraints	to	the	

DARPin	chain.	These	are	Glu	and	Lys	residues	at	the	backside	of	the	DARPin	

(indicated	in	Fig.	4a).	For	a	typical	N3C	DARPin	without	insertions/deletions,	

in	Rosetta	numbering	scheme,	this	would	be:	

15	
	

d-52 d-56 d-85 d-89 d-118 d-122

For	N2C:	

d-52 d-56 d-85 d-89

Check	numbering	if	insertions/deletions	are	present.	

3. Download	the	top	10	models	from	each	docking	simulation	and	place	them	into	

corresponding	folders	(en1-en20	in	Supplementary	Files).	

4. Run	ClusPro_rename.py	script	to	rename	the	files	and	to	move	them	to	another	

folder	for	prepacking.	

5. Navigate	to	the	docking_prepack	folder	and	list	the	models:	

ls -d $PWD/en* > files.txt

6. Prepack	the	models	with	Rosetta	docking_prepack_protocol	[6]:	

docking_prepack_protocol.linuxgccrelease\

-in:file:l ./files.txt\

-out:path:all ./rosetta_output\

-docking:partners A_D #receptor_ligand chains

Remarks:		

This	step	relaxes	side	chains	into	the	Rosetta	energy	function.	Make	sure	that	

chain	names	in	partners A_D	are	correct.	

7. Move	output	.pdb	files	(ending	with	_0001)	to	the	sequential_clustering	folder	

and	list	them:	

ls -d $PWD/en* > files.txt

8. Cluster	the	models	within	5	Å	radius	with	Rosetta	cluster:	

cluster.linuxgccrelease\

-in:file:l files.txt\

-in:file:fullatom\

-cluster:radius 5\

-run:shuffle

16	
	

Cluster	application	outputs	.pdb	files	labelled	as	

c.<cluster_number>.<model_number>.	c.0,	c.1	and	c.2	are	the	largest	clusters	

within	a	set.	<mode_number>=0	is	the	center	of	the	cluster.	

9. Move	models	from	clusters	to	corresponding	subfolders	and	rename	them:	

python rename.py

10. 	List	renamed	files	in	each	subfolder:	

ls -d $PWD/m* > files.txt

11. Cluster	the	models	from	each	subfolder	within	2	Å	radius	with	Rosetta	cluster:	

cluster.linuxgccrelease\

-in:file:l files.txt\

-in:file:fullatom\

-cluster:radius 2\

-run:shuffle

12. Rename	the	center	of	the	largest	subcluster	(rename	the	subcluster	center	c.0.0	

of	cluster	c.1	to	c.1.0.0,	etc.)	

Flexible docking with Rosetta and final ranking

1. Move	the	3	best	models	(centers	of	3	subclusters)	to	Rosetta_flexible_docking	

folder	and	list	them:	

ls -d $PWD/c.* > files.txt

2. Modify	the	constraint	file	constraint.cst	if	necessary.	

Example:	

SiteConstraint CA 52D A SIGMOID 8.0 -2.0

This	is	a	repulsive	constraint	where	residue	52	of	a	DARPin	(chain	D)	is	

penalized	for	contacting	the	receptor	(chain	A).		

The	templates	for	full	length	DARPins	are	provided.	Correct	the	numbering	if	a	

DARPin	contains	insertions/deletions.	Check	the	receptor	chain	name	and	

modify	if	necessary.	

17	
	

3. Set	up	the	movemap	and	the	fold	tree	according	to	Fig	4b		

	

Flexible	parts	of	the	receptor	are	as	determined	with	backrub	in	Receptor	

modeling,	point	7.	

	

DARPin	flexible	loops	as	schematically	depicted	in	Fig	4b.	In	PDB	numbering,	for	

N3C	without	insertions/deletions,	these	are	residues:	

G37-T49, G70-T82, G103-T-115, G136-T148

For	N2C:	

G37-T49, G70-T82, G103-T-115

A	simple	way	to	calculate	the	Rosetta	numbering	of	the	DARPin	loops	in	complex	

models	is:	

pdb_number – 12 + receptor_length (i.e.,	G37	would	be	125	if	the	receptor	is	

100-aa	long)	

Specify	flexible	parts	in	Rosetta	script:	modify	MoveMap	in	MinMover	in	

DARPin_flex.xml.	Change	only	values	in	‘begin’	and	‘end’.	

	

To	design	a	fold	tree,	one	needs	information	about	the	centers	of	mass.	This	can	

be	quickly	checked	by	starting	a	rigid-body	docking	with	default	options.	Copy	

one	of	the	models	to	rigid_dock_to_check_centers	and	run:	

docking_protocol.linuxgccrelease\

-in:file:s ./<name>.pdb

-nstruct 1

-use_input_sc

-partners A_D

Under	‘new	fold	tree’	a	fold	tree	for	rigid	molecules	is	created	and	the	centers	of	

masses	are	joined	by	jump	1.	If	a	center	of	mass	happens	to	be	in	a	flexible	

region,	pick	the	first	closest	rigid	residue.	

Set	up	the	fold	tree	for	flexible	docking	in	fold_tree_DARPin.txt:	

18	
	

Example:	

EDGE 185 209 -1

EDGE 217 210 -1

EDGE 203 217 4

EDGE 217 242 -1

This	part	of	a	fold	tree	includes	a	flexible	loop	between	residues	204-216.	There	

is	a	rigid	virtual	connection	between	the	residues	surrounding	it	(jump	4	

between	residues	203-217).	There	is	an	artificial	chain	break	between	residues	

209/210.	Artificial	chain	breaks	are	introduced	in	the	middle	of	the	flexible	loops	

in	receptors	and	between	A42/K43,	A75/K76,	A108/K109,	A141/Q142	(PDB	

numbering)	in	the	full-length	N3C	DARPin.	

	

Because	of	Rosetta	numbering,	the	DARPin	in	a	model	of	the	complex	will	again	

change	its	residue	identifiers.	The	DARPin	residue	that	was	numbered	N	in	

homology	modeling	will	now	be	N	+	the	length	of	the	receptor	(e.g.,	Asp13	in	

PDB	numbering,	that	became	Asp1	for	DARPin	homology	modeling	will	now	be	

Asp101	if	this	DARPins	is	docked	to	a	100-aa	residue	receptor).	

	

Creating	a	fold	tree	is	definitely	the	most	difficult	part	of	the	procedure.	We	

recommend	to	draw	it	by	hand	and	test	it	in	a	single-trajectory	simulation	(For	

this,	set	confidence="0"	for	ddg	filter	in	DARPin_flex.	and	set	-nstruct 1	in	option	

flags	in	the	following	point.)	

	

4. Run	the	flexible	docking	protocol	for	all	models:	

rosetta_scripts.mpi.linuxgccrelase\

-in:file:l ./files.txt

-out:path:all ./rosetta_output

-out:file:scorefile <name>.sc

-nstruct 1000

-jd2:ntrials 100

-ex1

-ex2aro

19	
	

-use_input_sc

-partners A_D

-dock_pert 3 8

-score:docking_interface_score 1

-parser:protocol DARPin_flex.xml

-parser:view

-constraints:cst_file constraint.cst

-constraints:cst_fa_file constraint.cst

-cst_weight 5

-cst_fa_weight 5

5. Navigate	to	output	files	and	list	the	1000	models	coming	from	each	input	model	

separately:	

ls -d $PWD/c.<0/1/2>* > files_c.<0/1/2>.txt

6. Analyze	1000	models	from	each	simulation	independently	with	

InterfaceAnalyzer:	

InterfaceAnalyzer.mpi.linuxgccrelease\

-in:file:l files_c.<0/1/2>.txt\

-in:file:fullatom\

-add_regular_scores_to_scorefile\

-out:file:scorefile Interface_c.<0/1/2>.txt\

-out:file:score_only\

-compute_packstat 1

7. Calculate	the	average	dG_separated,	packstat	and	sc_value	over	models	

generated	from	each	input	structure	and	compute	packstat	×	packstat	×	

dG_separated	×	sc_value	(p2gs)	values	for	each	cluster.	Pick	the	one	with	the	

lowest	score	as	the	near-native	cluster.	This	can	be	done,	e.g.,	with	the	provided	

script:	

 python p2gs_calculator.py

8. Identify	the	best	model	in	the	cluster	according	to	binding	energy,	e.g.,	

20	
	

cat Interface_c.<0/1/2>.txt | sort -nk 6 | awk '{print $NF}' | head -

1

	 	

21	
	

Supplementary	Files	

├──	ClusPro	
│			├──	ClusPro_rename.py	
│			├──	docking_prepack	
│			│			├──	flags	
│			│			└──	rosetta_output	
│			├──	en1	
│			├──	en10	
│			├──	en11	
│			├──	en12	
│			├──	en13	
│			├──	en14	
│			├──	en15	
│			├──	en16	
│			├──	en17	
│			├──	en18	
│			├──	en19	
│			├──	en2	
│			├──	en20	
│			├──	en3	
│			├──	en4	
│			├──	en5	
│			├──	en6	
│			├──	en7	
│			├──	en8	
│			├──	en9	
│			└──	sequential_clustering	
│							├──	c.0_cluster2A	
│							│			├──	flags_cluster	
│							│			├──	rename.py	
│							│			└──	rename.txt	
│							├──	c.1_cluster2A	
│							│			├──	flags_cluster	
│							│			├──	rename.py	
│							│			└──	rename.txt	
│							├──	c.2_cluster2A	
│							│			├──	flags_cluster	
│							│			├──	rename.py	
│							│			└──	rename.txt	
│							└──	flags_cluster	
├──	DARPin_model	

22	
	

│			├──	DARPin_fixbb	
│			│			├──	2qyj.clean.pdb	
│			│			├──	2qyj_N2C.clean.pdb	
│			│			├──	2qyj_N2C.resfile	
│			│			├──	2qyj.resfile	
│			│			├──	2xee_A.clean.pdb	
│			│			├──	2xee_A_N2C.clean.pdb	
│			│			├──	2xee_A_N2C.resfile	
│			│			├──	2xee_A.resfile	
│			│			├──	flags	
│			│			└──	rosetta_output	
│			│							└──	relax	
│			│											├──	flags	
│			│											└──	rosetta_output	
│			│															└──	flags_cluster	
│			└──	DARPin_remodel	
│							├──	2qyj.clean.pdb	
│							├──	2qyj_N2C.clean.pdb	
│							├──	2qyj_N2C.remodel	
│							├──	2qyj.remodel	
│							├──	2xee_A.clean.pdb	
│							├──	2xee_A_N2C.clean.pdb	
│							├──	2xee_A_N2C.remodel	
│							├──	2xee_A.remodel	
│							├──	flags	
│							└──	rosetta_output	
│											├──	flags_cluster	
│											└──	relax	
│															├──	flags	
│															└──	rosetta_output	
│																			└──	flags_cluster	
├──	README_docking_DARPins.txt	
├──	Receptor_model	
│			├──	relax_with_constraints	
│			│			├──	flags	
│			│			└──	rosetta_output	
│			└──	search_flexible	
│							├──	Backrub_on_full	
│							│			├──	flags	
│							│			├──	pymol_rmsf.py	
│							│			├──	rename.py	
│							│			└──	rename.txt	
│							└──	Backrub_on_loops	

23	
	

│											└──	flags	
└──	Rosetta_flexible_docking	
				├──	constraint.cst	
				├──	DARPin_flex.xml	
				├──	DARPin_loops_pdb_to_rosetta.xlsx	
				├──	flags_pert_flex	
				├──	fold_tree_DARPin.txt	
				├──	loop_exe.sh	
				├──	rigid_dock_to_check_centers	
				│			└──	flags_pert	
				└──	rosetta_output	
								├──	flags_int	
								└──	p2gs_calculator.py	
	

	

	

24	
	

References	

	

[1]		 G.	 Interlandi,	S.K.	Wetzel,	G.	Settanni,	A.	Plückthun,	A.	Caflisch.	Characterization	
and	 further	 stabilization	 of	 designed	 ankyrin	 repeat	 proteins	 by	 combining	
molecular	dynamics	simulations	and	experiments,	 J.	Mol.	Biol.	375	(2008)	837-
854.	

[2]		 M.A.	 Kramer,	 S.K.	 Wetzel,	 A.	 Plückthun,	 P.R.	 Mittl,	 M.G.	 Grütter.	 Structural	
determinants	 for	 improved	stability	of	designed	ankyrin	repeat	proteins	with	a	
redesigned	C-capping	module,	J.	Mol.	Biol.	404	(2010)	381-391.	

[3]		 J.	 Schilling,	 J.	 Schöppe,	 A.	 Plückthun.	 From	 DARPins	 to	 LoopDARPins:	 novel	
LoopDARPin	 design	 allows	 the	 selection	 of	 low	 picomolar	 binders	 in	 a	 single	
round	of	ribosome	display,	J.	Mol.	Biol.	426	(2014)	691-721.	

[4]		 B.	Kuhlman,	G.	Dantas,	G.C.	Ireton,	G.	Varani,	B.L.	Stoddard,	D.	Baker.	Design	of	a	
novel	globular	protein	fold	with	atomic-level	accuracy,	Science	302	(2003)	1364-
1368.	

[5]		 P.S.	 Huang,	 Y.E.	 Ban,	 F.	 Richter,	 I.	 Andre,	 R.	 Vernon,	 W.R.	 Schief,	 et	 al.	
RosettaRemodel:	a	generalized	framework	for	flexible	backbone	protein	design,	
PLoS	One	6	(2011)	e24109.	

[6]		 J.J.	Gray,	S.	Moughon,	C.	Wang,	O.	Schueler-Furman,	B.	Kuhlman,	C.A.	Rohl,	et	al.	
Protein-protein	 docking	 with	 simultaneous	 optimization	 of	 rigid-body	
displacement	and	side-chain	conformations,	J.	Mol.	Biol.	331	(2003)	281-299.	

	

