Destabilizing an interacting motif strengthens the association of a designed ankyrin repeat protein with tubulin

Shoeb Ahmad¹, Ludovic Pecqueur^{1,4}, Birgit Dreier², Djemel Hamdane³, Magali Aumont-Nicaise¹, Andreas Plückthun^{2,*}, Marcel Knossow^{1,*} and Benoît Gigant^{1,*}

¹Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France

²Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland

³Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France

⁴ Present address: Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France

*Correspondence should be addressed to A.P. (plueckthun@bioc.uzh.ch) or M.K.

(marcel.knossow@i2bc.paris-saclay.fr) or B.G. (benoit.gigant@i2bc.paris-saclay.fr)

Supporting Information

Supplementary Table 1 Supplementary Figures 1 to 6

	D1	TM-3	Tubulin-A-C2
Data collection*			
Space group	P4 ₁ 2 ₁ 2	H32	$P2_1$
Cell dimensions			
<i>a</i> , b, <i>c</i> (Å)	43.4, 43.4, 143.1	105.3, 105.3, 193.0	87.6, 71.8, 93.0
α, β, γ,°	90.0, 90.0, 90.0	90.0, 90.0, 120.0	90.0, 99.85, 90.0
Resolution (Å)	41.53 - 1.16	52.7 - 2.41	49.74 - 1.90
	(1.23 - 1.16)	(2.50 - 2.41)	(1.95 - 1.90)
R _{meas}	0.063 (0.377)	0.145 (1.36)	0.106 (2.002)
Ι / σΙ	14.17 (2.96)	10.4 (1.6)	11.85 (1.01)
$CC_{1/2}$	99.8 (87.5)	99.8 (55.5)	99.8 (36.0)
Completeness (%)	99.5 (97.7)	99.4 (96.0)	100.0 (100.0)
Multiplicity	5.1 (3.8)	6.7 (6.4)	9.0 (9.0)
Refinement		· · ·	
Resolution (Å)	32.1 - 1.16	44.4 - 2.41	49.74 - 1.90
No. reflections	48392	16079	89661
$R_{\rm work}$ / $R_{\rm free}$	0.123 / 0.149	0.174 / 0.219	0.173/0.208
No. atoms			
Protein	1380	2018	7693
Ligand/ion	32	29	153
Water	167	85	655
<i>B</i> factors			
Protein	11.5	57.8	48.4
Ligand/ion	18.8	90.6	53.4
Waters	24.9	62.0	55.6
Coordinate error (Å)	0.12	0.306	0.280
R.m.s.d.			
Bond lengths (Å)	0.013	0.010	0.010
Bond angles (°)	1.24	1.21	1.05
Ramachandran			
Favored region (%)	98.28	100	97.05
Allowed region (%)	1.72	0	2.75
Outliers (%)	0	0	0.20

Supplementary Table 1. Data collection and refinement statistics for D1, TM-3 and tubulin–A-C2 complex structures.

*Data were collected on a single crystal. Values in parentheses are for the highest-resolution shell.

Supplementary Figures

Supplementary Figure 1. Size exclusion chromatography coupled to multi-angle laser light scattering (SEC-MALLS) analysis of D1 and of TM-3. The differential refractive index (normalized dRI, left axis) and molecular mass (right axis) are plotted as a function of the column elution volume. The gel filtration step was carried out on a Prominence HPLC system (Shimadzu) using a Superdex 200 Increase 10/300 GL column (GE Healthcare) and with the same buffer as that of the gel filtration experiment of Fig. 6a. Samples of 100 μ l DARPin at a concentration of 2 mg/ml were run at a 0.5 ml/min flow rate. Detection was performed using a three-detector static light-scattering apparatus (MiniDAWN TREOS, Wyatt Technology, equipped with a quasi-elastic light-scattering module) and a refractometer (Optilab T-rEX, Wyatt Technology). Molecular weight calculations were performed with the ASTRA 6 software (Wyatt Technology) using a dn/dc value of 0.183 ml/g. The derived masses from the static light-scattering data are 20.2 \pm 0.7 kDa (D1) and 19.6 \pm 0.6 kDa (TM-3), close to the calculated mass (18.0 kDa) of monomeric DARPins.

Determined mass	Matching peptides	Theoretical mass	Δ mass
(Da)		(Da)	(Da)
15746	11-160	15744.808	-1.192
	1-148	15746.951	0.951
15817	1-149	15818.030	1.030
1 / MRGSHHHHHHGSDLGKKL /	/ / LEIVEVLLKHGADVNAQDKFGK	TAFDTSIDNGSEDLAEILQKL	169 N TM-3
		-	1-149 1-148
			11-160
			1-160 (Not detected
			11-149 (Not detecte

Supplementary Figure 2. Mass spectrometry analysis of subtilisin-digested TM-3 DARPin. (Top) Mass of stable fragments of subtilisin-digested TM-3 DARPin as determined by mass spectrometry and boundaries of matching fragments with their theoretical molecular weight. (Bottom) Sequence of TM-3 and putative cleavage sites (see Fig. 3a for a complete TM-3 sequence). Given that the higher determined mass corresponds to that of the 1-149 fragment, the ambiguity on the nature of the fragment of mass 15746 Da is resolved since the 1-160 and 11-149 fragments were not detected by mass spectroscopy. Therefore the TM-3 positions 11 and 160 are not preferential subtilisin-cleavage sites, hence the lower determined mass corresponds to that of the 1-148 fragment.

Supplementary Figure 3. Thermal unfolding profile of D1 and A-C2 DARPins recorded by circular dichroism (CD). The apparent melting temperatures of D1 and A-C2 were estimated to be 82.8 and 72.2 °C, respectively.

а

D1	MRGSHHHHHHGSDLGKKLLEAARAGODDEVRILMANGADVNATDASGLTPLHLAATYGHL	60
A-A8	MRGSHHHHHHGSDLGK R LLEAARAGQDDEVRILMANGADVNATDASGLTPLHLAATYGHL	60
A-A9	MRGSHHHHHHGSDLGRKLLEAARAGQDDEVRILMANGADVNATDASGLTPLHLAATYGHL	60
A-A10	MRGSHHHHHHGSNLGKKLLEAARAGQDDEVRILMANGADVNATDASGLTPLHLAATYGHL	60
A-A12	MRGSHHHHHHGSDLGKKLLEAARAGQDDEVRILMANGADVNATDASGLTPLHLAATYGHL	60
A-C1	MRGSHHHHHHGSDLGKKLLEAARAGQDDEVRILMA T GADVNATDASGLTPLHLAATYGHL	60
A-E1	MRGSHHHHHHGSDLGKKLLEAARAGQDDEVR T LMANGADVNATDASGLTPLHLAATYGHL	60
A-G8	MRGSHHHHHHGSDLGKKLLEAARAGQDDEVRILMANGADVNATDASGLTPLHLAATYGHL	60
A-G10	MRGSHHHHHHGSDLGKKLLEAARAGQDDEVRILMANGADVNATDASGLAPLHLAATYGHL	60
B-A12	MRGSHHHHHHGSDLGKKLLEAARAGQDDEVRILMANGADVNATDASGLTPLHLAATYGHL	60
B-D5	MRGSHHHHHHGSDLGK R LLEAARAGQDDEVRILMANGADVNATDASGLTPLHLAATYGHL	60
B-G4	MRGSHHHHHHGSDLGKKLLEAARAGQ G DEVRIL V ANGADVNATDASGLTPLHLAATYGHL	60
B-G8	${\tt MRGSHHHHHHGSDLGKKLLEAARAGQDDEVRILMANGADVNATDASGLTPLHLAATYGHL}$	60
D1	EIVEVLLKHGADVNAIDIMGSTPLHLAALIGHLEIVEVLLKHGADVNAVDTWGDTPLHLA	120
A-A8	EIVEVLLKHGADVNAIDIMGSTPLHLAALVGHLEIVEVLLKHGADVNAVDTWGDTPLHLA	120
A-A9	EIVEVLLKHGADVNAI DIMGSTPLHLAALIGHLEIVEVLL M HGADVNAVDTWGDTPLHLA	120
A-A10	EIVEALLKHGADVNAIDIVGSTPLHLAALIGHLEIVEVLLKHGADVSAVDTWGDTPLHLA	120
A-A12	EIVEVLLKHGADVNAIDITGSTPLHLAALIGHLEIIEVLLKHGADVNAVDTWGDTPLHLA	120
A-C1	EIVGVLLKHGADVNAIDIVGSTPLHLAALIGHLGIVEVLLKHGADVNAVDTWGDTPLHLA	120
A-E1	EIVEVLLRHGADVNAIDIVGSTPLHLAALVGHLEIVEVLLKHGADVNAVDTWGDTPLHLA	120
A-G8	EIVEVLLKHGADGNAIDIMGSTPLHLAALIGHLEIVEVLLKHGADVNAVDTWGDTPLHLA	120
A-G10	EIVEALLKHGADVNAIDITGSTPLHLAALIGHPEIVEVLLKHGADVNAVDTWGDTPLHLA	120
B-A12	EIVEVLLKHGADVNAIDIMGSTPLHLTALTGRLEIVEVLLKHGADVNAVDTWGDTPLHLA	120
B-D5	EIVEVLLKHGADVNAIDIMGSTPLHLAALIGHLGIVEVLLKHGAGVSAVDTWGDTPLHLA	120
B-G4	EIVEVLLRHGADVNAIDAMGSTPLHLAALIGHLEIVEVLLKHGADVNAVDTWGDTPLHLA	120
B-G8	EIVEVLLRHGADVNAIDIMGSTPLHLAALIGHLEIVEVLLKHGADVNAVDTWGDTSLHLA	120
D1	AIMGHLEIVEVLLKHGADVNAQDKFGKTAFDISIDNGNEDLAEILQKLN 169	
A-A8	AIMGHLEIVEVLLKHSADVNAQDKFGKTAFDISIDNGNEDLAEILQKLN 169	
A-A9	AIMGHLEIVEVLLKHGADVNAQDKFGKTASDISIDNGDEDLAEILQKLN 169	
A-A10	AIMGHLEIVEVLLRHGADVNAQDRFGKTAFDISIDNGNEDLAEILQKLN 169	
A-A12	AIMGHLEIVEVLLKHGADVNAQDKFGKTAFDISIDNGNEDLAEILQKLN 169	
A-C1	AIMGHLEVVEVLLKHGADANAQDKFGKTAFDISIDNGNEDLAEILQKLN 169	
A-E1	AIMGHLEIVEVLLRHGADVNAQDKFGKTAFDVSIDNGNEDLAEILQKLN 169	
A–G8	AIMGHLEIVEVLLKHGADVNTQDKFGKTAFDISIDNGNEDLAEILQKLN 169	
A-G10	AIMGHLEIVEVLLKHGADVNAPDKFGKTAFDISIDSGNEDLAEILQKLN 169	
B-A12	AIMGHLEIVEVLLKHGADVNAQDKFGKTAFDISIDNGNEDLAEILQKLN 169	
B-D5	AIMGHLEIVEVLLKHGADVNAQDKFGKTAFDISIDNGNEDLAEILQKLN 169	
B-G4	AIMGHLEIVEVLLKHGADVSAQDRFGKTAFDISIDNGNEDLAEILQKLN 169	
B-G8	AIMGHLEIVEVLLKHGADVNAODKFGKTALDISIDNGNEDLAEILOKLN 169	

Supplementary Figure 4 (continued on next page)

b

D1 A-B2 A-B7 A-B12 A-E12 B-B5 B-B7	MRGSHHHHHHGSDLGKKLLEAARAGQDDEVRILMANGADVNATDASGLTPLHLAATYGHL MRGSHHHHHHGSDLGKKLLEAARAGQDDEVRILMANGADVNATDASGLTPLHLAATYGHL MRGSHHHHHHGSDLGKKLLEAARAGQDDEVRILMANGADVDAFDSTGQTPLHLAATYGHL MRGSHHHHHHGSDLGKKLLEAARAGQDDEVRILMANGADVNATDASGLTPLHLAATYGHL MRGSHHHHHHGSDLGKKLLEAARAGQDDEVRILMANGADVNATDASGLTPLHLAATYGHL MRGSHHHHHHGSDLGKKLLEAARAGQDNEVRILMANGADVNATDASGLTPLHLAATYGHL	60 60 60 60 60 60
D1 A-B2 A-B7 A-B12 A-E12 B-B5 B-B7	EIVEVLLKHGADVNAIDIMGSTPLHLAALIGHLEIVEVLLKHGADVNAVDTWGDTPLHLA EIVEVLLKHGADVNAIDIMGSTPLHLAALIGHLEIVEVLLKHGADVNAVDTWGDTPLHLA EIVEVLLKHGADVNATDIMGSTPLHLAALIGHLEIVEVLLKHGADVNAVDTWGDTPLHLA EIVEVLLRHGADVNAIDIMGSTPLHLAALIGHLEIVEVLLKHGAGVNAVDTWGDTPLHLA EIVEVLLKHGADVNAIDTMGSTPLHLAALIGHLEIVEVLLKHGADVNAVDTWGDTPLHLA GIVEVLLEHGADVNAIDIMGSTPLHLAALIGHLKIVEVLLKHGADVNAVDTWSDTPLHLA GIVEVLLKHGADVNAIDIMGSTPLHLAALIGHLEIVEVLLKHGADVNAVDTWSDTPLHLA	120 120 120 120 120 120 120
D1 A-B2 A-B7 A-B12 A-E12 B-B5 B-B7	AIMGHLEIVEVLLKHGADVNAQDKFGKTAFDISIDNGNEDLAEILQKLN169AIMGHLEIVEVLLKHGAGVNAQDKLGKTAFDVAIDNGNEDLAEILQKLN169AIMGHPEIVEVLPKHGADVNAQDKLGRTAFDVSIDDGNEDLAEILQKLN169AIMGHLEIVEVLLKHGADVNTQDKFGKTAFDISIGNGNEDLAEILQKLN169AIMGHPEIVEVLLKHGADVNTQDKFGKTALDILIDNGNEDLAEILQKLN169AIMGHPEIVEVLLKHGADVNTQDKFGKTAFDISIDNGNEDLAEILQKLN169AIMGHPEIVEVLLKHGADVNTQDKFGKTAFDISIDNGNEDLAEILQKLN169AIMGHPEVVEVLLKHGADVNAQDKFGKTAFDISIDNGNEDLAEILQKLN169	
C D1 A-C2 A-G2 B-A10 B-D3 B-D6	MRGSHHHHHHGSDLGKKLLEAARAGQDDEVRILMANGADVNATDASGLTPLHLAATYGHL MRGSHHHHHHGSDLGKKLLEAARAGQDDEVRVLMANGADVNATDASGLTPLHLAATYGHL MRGSHHHHHHGSDLGKKLLEAARAGQDGEVRILIANGADVNATDASGLTPLHLAATYGHL MRGSHHHHHHGSDLGKKLLEAARAGQDDEVRILMANGADVNATDASGLTPLHLAATYGHL MRGSHHHHHHGSDLGKKLLETARAGQDDEVRVLVANGADVNATDASGLTPLHLAATYGHL MRGSHHHHHHGSDLGKKLLEAARAGQDDEVRILMANGADVNATDASGLTPLHLAATYGHL	60 60 60 60 60
C D1 A-C2 A-G2 B-A10 B-D3 B-D6 D1 A-C2 A-G2 B-A10 B-D3 B-D6	MRGSHHHHHHGSDLGKKLLEAARAGQDDEVRILMANGADVNATDASGLTPLHLAATYGHL MRGSHHHHHHGSDLGKKLLEAARAGQDDEVRVLMANGADVNATDASGLTPLHLAATYGHL MRGSHHHHHHGSDLGKKLLEAARAGQDGEVRILIANGADVNATDASGLTPLHLAATYGHL MRGSHHHHHHGSDLGKKLLEAARAGQDDEVRILMANGADVNATDASGLTPLHLAATYGHL MRGSHHHHHHGSDLGKKLLETARAGQDDEVRVLVANGADVNATDASGLTPLHLAATYGHL MRGSHHHHHHGSDLSKKLLEAARAGQDDEVRILMANGADVNATDASGLTPLHLAATYGHL EIVEVLLKHGADVNAIDIMGSTPLHLAALIGHLEIVEVLLKHGADVNAVDTWGDTPIHLA EIVEVLLKHGADVNAIDIMGSTPLHLAALIGHLEIVEVLLKHGADVNAVDTWGDTPIHLA EIVEVLLKHGADVNAIDIMGSTPLHLAALIGHLEIVEVLLKHGADVNAVDTWGDTPIHLA GIIEVLLKHGADVNAIDIMGSTPLHLAALIGHLEIVEVLLKHGADVNAVDTWGDTPIHLA	60 60 60 60 120 120 120 120 120

Supplementary Figure 4. Multiple sequence alignments of low- (panel a), medium- (b) and high-affinity (c) mutants, colored by repeats as in Fig. 3a. In the case of the medium-affinity mutants, several mutations are clustered in the last internal repeat and in the C-cap (framed). In the case of the high-affinity mutants, the positions 118 and 152 are framed in red. The optimized TM-3 variant has mutated residues at these two positions (Fig. 3a). Two other regions gathering several mutations, in the last internal repeat and in the C-cap, are also framed (in black).

Supplementary Figure 5. Dissociation constant of the tubulin-D1 complex estimated by SPR. The resonance unit value at the plateau is plotted as a function of the tubulin concentration injected on a sensor chip with immobilized D1 (data from Fig. 2d, left panel). The data were fitted with the Proteon Manager software and gave a K_D value of 300 (±30) nM.

Supplementary Figure 6. Stereo views of the TM-3 $2F_{obs}$ - F_{calc} electron density map, contoured at the 1 σ level and centered on Arg118. Top: molecule A, two alternate conformations of Arg118 have been modeled. Bottom: molecule B, in which Arg118 adopts only one conformation.