## Folding and Unfolding Mechanism of Highly Stable Full Consensus Ankyrin Repeat Proteins

## **Supplementary Material**

Svava Wetzel<sup>1</sup>, Giovanni Settanni<sup>2</sup>, Manca Kenig<sup>1,‡</sup>, H. Kaspar Binz<sup>1,‡</sup>, and Andreas Plückthun<sup>1,\*</sup>

 <sup>1</sup> Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
<sup>2</sup> MRC Centre for Protein Engineering, Hills Road, CB2 0QH Cambridge, UK
\* Corresponding author

<sup>‡</sup> present addresses: M. K. Novartis Lek Pharmaceuticals, Kolodvorska 27, S1-1234 Menges, Slovenia; H. K. B., Molecular Partners AG, Grabenstrasse 11a, CH-8952 Zürich-Schlieren, Switzerland

Correspondence address:

Prof. Dr. Andreas Plückthun, Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland, Tel +41 44 635 5570, Fax +41 44 635 5712, <u>plueckthun@bioc.uzh.ch</u> Supplementary Material Figure 1:

Sequence alignment of the different ankyrin consensus repeat modules. The full consensus repeat from Mosavi *et al.*<sup>17</sup> and Wetzel *et al.* as well as the library module from Binz *et al.*<sup>15</sup> are shown with their respective numbering. For analyzing molecular dynamics data, Interlandi *et al.* used a different numbering.<sup>18</sup> Variable residues are highlighted in red, the fixed positions in the full consensus design are shown in blue, while the differences to the repeat of Mosavi *et al.*<sup>17</sup> are highlighted in yellow. Secondary structure elements are symbolized by a and t.

| tt          | 28 29 30 31 32 33 | <pre>&lt; N A K D K</pre> | <pre>&lt; v v v v v v v v v v v v v v v v v v v</pre> |                  | 30 31 32 33         |                 |           |
|-------------|-------------------|---------------------------|-------------------------------------------------------|------------------|---------------------|-----------------|-----------|
| a<br>a      | 23 24 25 26 27    | E A G A D                 | K Z G A D                                             | K A G            | 25 26 27 28 29      | 31 32 33        | a<br>a    |
| a a a a     | 18 19 20 21 22    | V K L L                   | V E V L L                                             | V E V L L        | 20 21 22 23 24      | 26 27 28 29 30  | a a a a a |
| a<br>a<br>a | 3 14 15 16 17     | H L E                     | H L E                                                 | H L E            | 5 16 17 18 19 3     | 1 22 23 24 25 3 | a a a     |
| a a a       | 9 10 11 12 13     | a a r <mark>n</mark> g    | A X X A A                                             | A A R E G        | 11 12 13 14 15      | 17 18 19 20 21  | a a a     |
| a a a       | 4 5 6 7 8         | ГРГНГ                     | ГРГНГ                                                 | ГРСНГ            | 5 7 8 9 10          | 2 13 14 15 16   | a a a a   |
| t t t       | 123               | ר<br>ש<br>ע               | ר<br>א<br>ש<br>א<br>א                                 | ר<br>ש<br>ס<br>ע | 2 3 4 5 6           | 8 9 10 11 1     | t t t t   |
|             |                   |                           | ۵                                                     | A D V N A K D    | 28 29 30 31 32 33 1 | 1 2 3 4 5 6 7   | t         |
|             | Mosavi Nr.        | Mosavi                    | Binz                                                  | Wetzel           | Binz/Wetzel Nr.     | Interlandi Nr.  |           |

Supplementary Material Figure 2:

Representative kinetic traces for refolding (a),(b) and unfolding (c),(d) of NI<sub>2</sub>C and NI<sub>3</sub>C at 20°C followed by CD stopped-flow CD. The refolding kinetics (a),(b) are fitted to a single exponential equation, whereas the unfolding kinetics (c),(d) were fitted to a double exponential equation. The final protein concentration was 18  $\mu$ M. The final GdnHCl concentrations were 1.7 M for refolding of NI<sub>2</sub>C (a) and 1.5 M for refolding of NI<sub>3</sub>C (b); 4.4 M for unfolding of NI<sub>2</sub>C (c) and 6.8 M for unfolding of NI<sub>3</sub>C (d). The fit to a single exponential is shown in red, the fit to a double exponential in blue.

