Online Supplement

In vitro selection and characterization of DARPins and Fab fragments for the cocrystallization of membrane proteins: The Na^{+}-citrate symporter CitS as an example

Thomas Huber ${ }^{1}$, Daniel Steiner ${ }^{1}$, Daniela Röthlisberger ${ }^{1,2}$ and Andreas Plückthun ${ }^{1,3}$
${ }^{1}$ Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH8057 Zürich, Switzerland
${ }^{2}$ present address: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
${ }^{3}$ to whom correspondence should be addressed:
Email: plueckthun@bioc.unizh.ch
Tel: $\quad+41-44-6355570$
Fax: $\quad+41-44-6355712$

The two equilibria of CitS and DARPin in the assay solution can be described by Eq. 1 , when assuming a $1: 1$ interaction.
$\mathrm{C}+\mathrm{A} \stackrel{\mathrm{K}_{\mathrm{D} 1}}{\rightleftharpoons} \mathrm{CA}$ and $\mathrm{C}_{\mathrm{b}}+\mathrm{A} \stackrel{\mathrm{K}_{\mathrm{D} 2}}{\rightleftharpoons} \mathrm{C}_{\mathrm{b}} \mathrm{A}$

Here C is the his-tagged CitS (${ }_{\mathrm{His}} \mathrm{CitS}$) in solution, A is the myc-tagged DARPin ($\mathrm{DARPin}_{\text {mycs }}$) and C_{b} is the bound AVI-tagged $\mathrm{CitS}\left(\mathrm{CitS}_{\mathrm{AVI}}\right)$ present on the beads. The equilibria are characterized by the following basic relationships (Eq. 2 to 6):

$$
\begin{array}{ll}
K_{D 1}=\frac{[C][A]}{[C A]} \text { (Eq. 2) } & K_{D 2}=\frac{\left[C_{b}\right][A]}{\left[C_{b} A\right]} \text { (Eq. 3) } \\
{[C]_{t}=[C]+[C A] \text { (Eq. 4) }} & {[A]_{t}=[A]+[C A]+\left[C_{b} A\right] \text { (Eq. 5) }} \\
{\left[C_{b}\right]_{t}=\left[C_{b}\right]+\left[C_{b} A\right] \text { (Eq. 6) }} &
\end{array}
$$

where $[C]$ is the concentration of free ${ }_{\text {His }} \mathrm{CitS},[C]_{\mathrm{t}}$ is the total concentration of added ${ }_{\text {His }} \mathrm{CitS},\left[C_{b}\right]$ is the uncomplexed amount of $\mathrm{CitS}_{\mathrm{AVI}}$, present on beads, $\left[C_{b}\right]_{t}$ is the total amount of $\mathrm{CitS}_{\text {AVI }}$ present on the beads, $[A]$ is the concentration of free DARPin ${ }_{\text {myc }}$, $[A]_{\mathrm{t}}$ is the total concentration of added $\mathrm{DARPin}_{\text {myc }}$, and $[C A]$ and $\left[C_{b} A\right]$ are the concentrations of the corresponding complexes. All bead-bound species are treated like molecules in solution and therefore molar concentrations were used. $\mathrm{K}_{\mathrm{D} 1}$ and $\mathrm{K}_{\mathrm{D} 2}$ are the dissociation constants of the two equilibria. We assume here that the dissociation constants $K_{D 1}$ and $K_{D 2}$ are the same (therefore, named K_{D}). Using the mass balances in Eq. 2 and Eq. 3, we obtain:

$$
\begin{align*}
& K_{D}=\frac{\left([C]_{t}-[C A]\right)\left([A]_{t}-[C A]-\left[C_{b} A\right]\right)}{[C A]} \tag{Eq.7}\\
& K_{D}=\frac{\left(\left[C_{b}\right]_{t}-\left[C_{b} A\right]\right)\left([A]_{t}-[C A]-\left[C_{b} A\right]\right)}{\left[C_{b} A\right]} \tag{Eq.8}
\end{align*}
$$

From these two equations, it follows that

$$
\begin{equation*}
[C A]=\frac{\left[C_{b} A\right][C]_{t}}{\left[C_{b}\right]_{t}} \tag{Eq.9}
\end{equation*}
$$

Combining Eq. 8 and Eq. 9 will give Eq. 10:

$$
\begin{equation*}
K_{D}=\frac{\left(\left[C_{b}\right]_{t}-\left[C_{b} A\right]\right)\left([A]_{t}-\frac{\left[C_{b} A\right][C]_{t}}{\left[C_{b}\right]_{t}}-\left[C_{b} A\right]\right)}{\left[C_{b} A\right]} \tag{Eq.10}
\end{equation*}
$$

Solving Eq. 10 for $\left[C_{b} A\right]$ will yield Eq. 11 (solution of the quadratic equation).

$$
\begin{equation*}
\left.\left[C_{b} A\right]=\frac{\left([A]_{t}+[C]_{t}+\left[C_{b}\right]_{t}+K_{D}\right)-\sqrt{\left([A]_{t}+[C]_{t}+\left[C_{b}\right]_{t}+K_{D}\right)^{2}-4\left(\frac{[\mathrm{C}]_{\mathrm{t}}}{\left[\mathrm{C}_{\mathrm{b}}\right]_{\mathrm{t}}}+1\right)\left[C_{b}\right]_{t}[A]_{t}}}{2\left(\frac{[\mathrm{C}]_{\mathrm{t}}}{\left[\mathrm{C}_{\mathrm{b}}\right]_{\mathrm{t}}}+1\right.}\right) \tag{Eq.11}
\end{equation*}
$$

The measured ECL signal is proportional to the concentration of bound complex $\left[C_{b} A\right]$. Taking also a term of background binding $(B G)$ into account we obtain Eq. 12.
$E C L=$ Const $.\left[C_{b} A\right]+B G$
where Const. is simply a proportionality constant which is obtained from the fit and relates the measured ECL signal to bound complexes. We can then express the measured ECL signal by Eq. 13.
$E C L=\frac{\text { Const. }}{2\left(\frac{[C]_{t}}{\left[\mathrm{C}_{\mathrm{b}}\right]_{t}}+1\right)}\left\{\left([A]_{t}+[C]_{t}+\left[C_{b}\right]_{t}+K_{D}\right)-\sqrt{\left([A]_{t}+[C]_{t}+\left[C_{b}\right]_{t}+K_{D}\right)^{2}-4\left(\frac{[C]_{\mathrm{t}}}{\left[\mathrm{CC}_{\mathrm{b}}\right]_{\mathrm{t}}}+1\right)\left[C_{b}\right]_{t}[A]_{t}}\right\}+B G$

We thus fit the parameters $K_{D},[A]_{\mathrm{t}}$, Const. and $B G$. Even though $[A]_{\mathrm{t}}$ should be known, possible errors in the concentration of active molecules make it advisable to fit this term as well.

