Online Supplement

In vitro selection and characterization of DARPins and Fab fragments for the cocrystallization of membrane proteins: The Na⁺-citrate symporter CitS as an example

Thomas Huber¹, Daniel Steiner¹, Daniela Röthlisberger^{1,2} and Andreas Plückthun^{1,3}

¹ Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

² present address: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA

³ to whom correspondence should be addressed:

Email: plueckthun@bioc.unizh.ch

Tel: +41-44-635 55 70

Fax: +41-44-635 57 12

Derivation of equations for the affinity determination

The two equilibria of CitS and DARPin in the assay solution can be described by Eq. 1, when assuming a 1:1 interaction.

$$C + A \xrightarrow{K_{D1}} CA$$
 and $C_b + A \xrightarrow{K_{D2}} C_b A$ (Eq. 1)

Here C is the his-tagged CitS ($_{His}CitS$) in solution, A is the myc-tagged DARPin (DARPin_{myc5}) and C_b is the bound AVI-tagged CitS (CitS_{AVI}) present on the beads. The equilibria are characterized by the following basic relationships (Eq. 2 to 6):

$$K_{D1} = \frac{[C][A]}{[CA]} \text{ (Eq. 2)} \qquad \qquad K_{D2} = \frac{[C_b][A]}{[C_bA]} \text{ (Eq. 3)}$$
$$[C]_t = [C] + [CA] \text{ (Eq. 4)} \qquad \qquad [A]_t = [A] + [CA] + [C_bA] \text{ (Eq. 5)}$$
$$[C_b]_t = [C_b] + [C_bA] \text{ (Eq. 6)}$$

where [C] is the concentration of free _{His}CitS, $[C]_t$ is the total concentration of added _{His}CitS, $[C_b]$ is the uncomplexed amount of CitS_{AVI}, present on beads, $[C_b]_t$ is the total amount of CitS_{AVI} present on the beads, [A] is the concentration of free DARPin_{myc}, $[A]_t$ is the total concentration of added DARPin_{myc}, and [CA] and $[C_bA]$ are the concentrations of the corresponding complexes. All bead-bound species are treated like molecules in solution and therefore molar concentrations were used. K_{D1} and K_{D2} are the dissociation constants of the two equilibria. We assume here that the dissociation constants K_{D1} and K_{D2} are the same (therefore, named K_D). Using the mass balances in Eq. 2 and Eq. 3, we obtain:

$$K_{D} = \frac{([C]_{t} - [CA])([A]_{t} - [CA] - [C_{b}A])}{[CA]}$$
(Eq. 7)

$$K_{D} = \frac{([C_{b}]_{t} - [C_{b}A])([A]_{t} - [CA] - [C_{b}A])}{[C_{b}A]}$$
(Eq. 8)

From these two equations, it follows that

$$[CA] = \frac{[C_b A][C]_t}{[C_b]_t}$$
(Eq. 9)

Combining Eq. 8 and Eq. 9 will give Eq. 10:

$$K_{D} = \frac{\left([C_{b}]_{t} - [C_{b}A] \right) \left([A]_{t} - \frac{[C_{b}A][C]_{t}}{[C_{b}]_{t}} - [C_{b}A] \right)}{[C_{b}A]}$$
(Eq. 10)

Solving Eq. 10 for $[C_bA]$ will yield Eq. 11 (solution of the quadratic equation).

$$[C_{b}A] = \frac{\left([A]_{t} + [C]_{t} + [C_{b}]_{t} + K_{D}\right) - \sqrt{\left([A]_{t} + [C]_{t} + [C_{b}]_{t} + K_{D}\right)^{2} - 4\left(\frac{[C]_{t}}{[C_{b}]_{t}} + 1\right)[C_{b}]_{t}[A]_{t}}}{2\left(\frac{[C]_{t}}{[C_{b}]_{t}} + 1\right)}$$

(Eq. 11)

The measured ECL signal is proportional to the concentration of bound complex $[C_bA]$. Taking also a term of background binding (BG) into account we obtain Eq. 12.

$$ECL = Const. [C_b A] + BG$$
(Eq. 12)

where *Const.* is simply a proportionality constant which is obtained from the fit and relates the measured ECL signal to bound complexes. We can then express the measured ECL signal by Eq. 13.

$$ECL = \frac{Const.}{2\left(\frac{[C]_{t}}{[C_{b}]_{t}} + 1\right)} \left\{ \left([A]_{t} + [C]_{t} + [C_{b}]_{t} + K_{D} \right) - \sqrt{\left([A]_{t} + [C]_{t} + [C_{b}]_{t} + K_{D} \right)^{2} - 4\left(\frac{[C]_{t}}{[C_{b}]_{t}} + 1\right)[C_{b}]_{t}[A]_{t}} \right\} + BG$$

We thus fit the parameters K_D , $[A]_t$, *Const.* and *BG*. Even though $[A]_t$ should be known, possible errors in the concentration of active molecules make it advisable to fit this term as well.