Supplementary Material for

GroEL Walks the Fine Line: The Subtle Balance of Substrate and Cochaperonin Binding by GroEL

A Combinatorial Investigation by Design, Selection and Screening

Martin Kawe¹ and Andreas Plückthun^{1*}

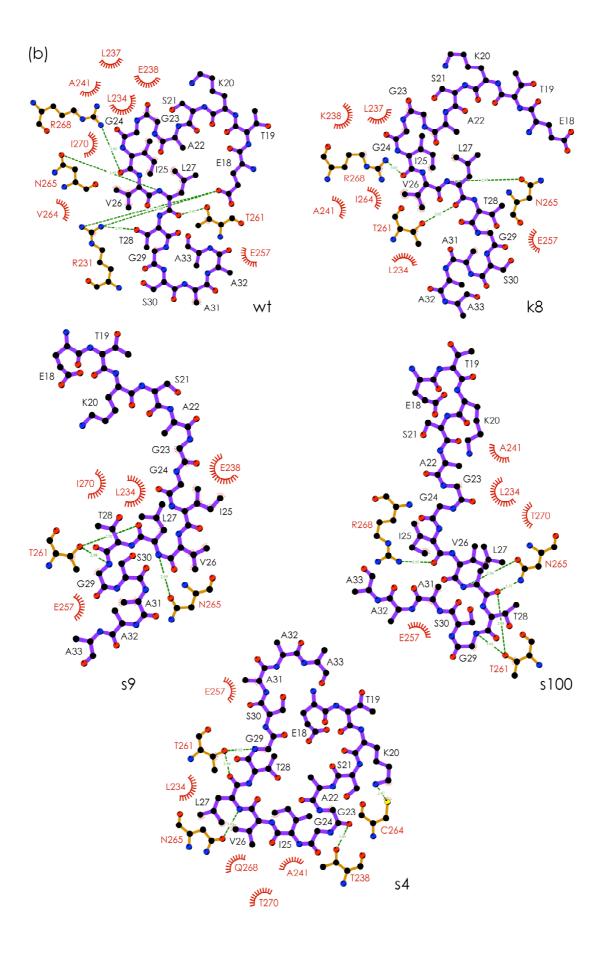
¹Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.

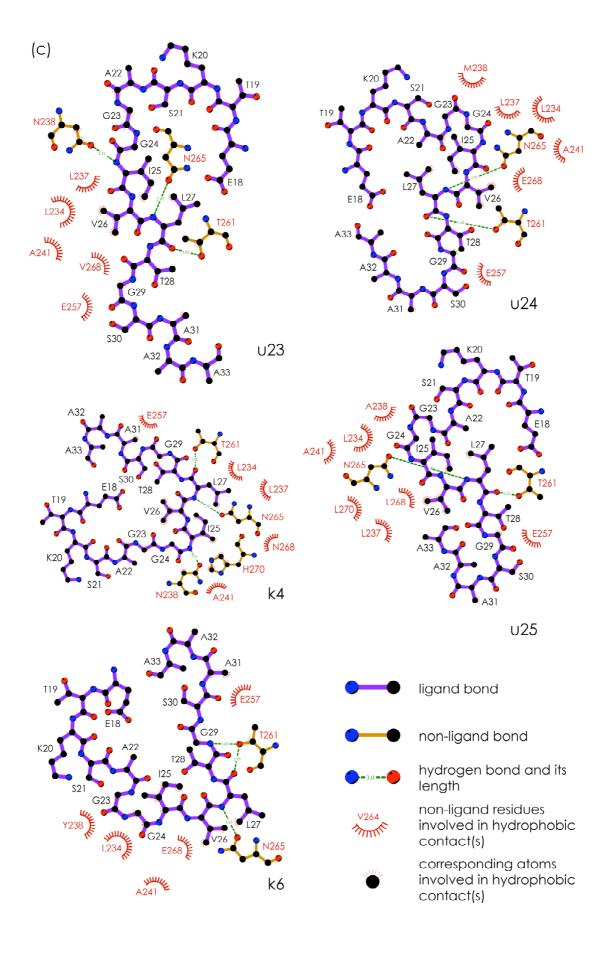
*Corresponding author. Tel.: +41-44-635 5570; Fax: +41-44-635 5712; E-mail: plueckthun@bioc.unizh.ch

Table 1. Supplement

Amino acid residues encoded by NNK and NNB

NNK				NBB							
amino acid	relative frequency	amino acid	relative frequency	Amino acid	relative frequency	amino acid	relative frequency				
Gly	2	Ser	3	Gly	3	Ser	5				
Ala	2	Thr	2	Ala	3	Thr	3				
Val	2	Asn	1	Val	3	Asn	_				
Leu	3	Gln	1	Leu	4	Gln	_				
Ile	1	Asp	1	Ile	2	Asp	-				
Cys	1	Glu	1	Cys	2	Glu	-				
Met	1	His	1	Met	1	His	-				
Phe	1	Lys	1	Phe	2	Lys	-				
Tyr	1	Arg	3	Tyr	_	Arg	4				
Trp	1	Stop	1	Trp	1	Stop	_				
Pro	2			Pro	3						


Figure 1. Supplement H-bonding network of residues in the GroEL-GroES interface.


(a) Residues of the GroEL-GroES protein-protein interface involved in H-bonding are listed. Residues in bold specify positions randomized in the GroEL apical domain library. Positions shaded in grey are involved in H-bonding in GroEL_{wt}. The amino acid at these positions and the number of H-bonds they contribute is given for each GroEL variant. The H-bonding network was calculated using MOLMOL ¹ after standard amino-acid side chain energy minimization performed with the Swiss PDB-viewer ²; (b) and (c) Schematic diagram of the GroEL-GroES protein-protein interface of one chaperonin subunit for each of the analyzed GroEL variants generated by using the program LIGPLOT ³. H-bonds between GroEL and GroES amino acid residues and their respective length are depicted in green.

Insert Figure

(a)

Residue_#	wt	wt	k8	k8	s4	s4	s9	s9	s100	s100	u23	u23	u24	u24	u25	u25	k4	k4	k6	k6
231	R	2	A		Y		T		V		G		G		P		L		G	
238	E		K		T	1	Е		S		N	1	M		A		N	1	Y	
261	T	1	T	1	T	2		2	T	2	T	1	T	1	T	1	T	1	T	2
264	V		I		C	1	V		I		P		P		A		T		R	
265	N	1	N	1	N	1	N	1	N	1	N	1	N	1	N	1	N	1	N	1
268	R	1	R	1	Q		M		R	1	V		Е		L		N		E	

References

- 1. Koradi, R., Billeter, M. & Wüthrich, K. (1996). MOLMOL: a program for display and analysis of macromolecular structures. *J. Mol. Graph.* **14**, 51-55.
- 2. Guex, N. & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-PDPViewer: An environment for comparative protein modeling. *Electrophoresis* **18**, 2714-2723.
- 3. Wallace, A. C., Laskowski, R. A. & Thornton, J. M. (1995). LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. *Protein Eng.* **8**, 127-134.