Identification of a Novel Subtype-Selective α_{1B}-Adrenoceptor Antagonist

ABSTRACT: α_{1A}-, α_{1B}-, and α_{1D}-adrenoceptors (ARs) are members of the adrenoceptor G protein-coupled receptor family that are activated by adrenaline (epinephrine) and noradrenaline. α_{1}-ARs are clinically targeted using antagonists that have minimal subtype selectivity, such as prazosin and tamsulosin, to treat hypertension and benign prostatic hyperplasia, respectively. Abundant expression of α_{1}-ARs in the heart and central nervous system (CNS) makes these receptors potential targets for the treatment of cardiovascular and CNS disorders, such as heart failure, epilepsy, and Alzheimer’s disease. Our understanding of the precise physiological roles of α_{1}-ARs, however, and their involvement in disease has been hindered by the lack of sufficiently subtype-selective tool compounds, especially for α_{1B}-AR. Here, we report the discovery of 4-[(2-hydroxyethyl)amino]-6-methyl-2H-chromen-2-one (Cpd1), as an α_{1B}-AR antagonist that has 10–15-fold selectivity over α_{1A}-AR and α_{1D}-AR. Through computational and site-directed mutagenesis studies, we have identified the binding site of Cpd1 in α_{1B}-AR and propose the molecular basis of α_{1B}-AR selectivity, where the nonconserved V197 residue plays a major role, with contributions from L314 within the α_{1B}-AR pocket. By exploring the structure–activity relationships of Cpd1 at α_{1B}-AR, we have also identified 3-[(cyclohexylamino)methyl]-6-methylquinolin-2(1H)-one (Cpd24), which has a stronger binding affinity than Cpd1, albeit with reduced selectivity for α_{1B}-AR. Cpd1 and Cpd24 represent potential leads for α_{1B}-AR-selective drug discovery and novel tool molecules to further study the physiology of α_{1}-ARs.

INTRODUCTION

G protein-coupled receptors (GPCRs) are a large family of transmembrane proteins that are activated by a variety of endogenous stimuli, such as neurotransmitters, ions, and peptides. They regulate numerous physiological processes and constitute highly druggable target proteins. The α_{1}-adrenoceptors (α_{1}-AR), α_{1A}-AR, α_{1B}-AR, and α_{1D}-AR are members of the GPCR family that are activated endogenously by the catecholamines adrenaline (epinephrine) and noradrenaline. Historically, the roles of α_{1}-ARs in modulating cardiac physiology have been well studied and these receptors are clinically targeted. However, the role of cell-type specific expression of specific α_{1}-AR subtypes is unknown, and functional investigation of each subtype is hampered by the lack of validated, fully subtype-selective α_{1}-AR antagonists.

Knowledge of the roles of these receptors has largely come from transgenic animal studies or using nonselective ligands. α_{1A}-AR and α_{1B}-AR are believed to mediate opposing roles in many aspects of cardiac physiology, with α_{1A}-AR stimulation being cardioprotective and chronic α_{1B}-AR activation detrimental. α_{1A}-AR and α_{1B}-AR are the major α_{1}-ARs expressed in the central nervous system (CNS), with similarly opposing roles: α_{1A}-AR activation enhances learning, memory, and neurogenesis, whereas prolonged α_{1B}-AR stimulation or overexpression is neurodegenerative and pro-apoptotic. Recent studies using the selective α_{1A}-AR agonists A-616003 and dabuzalgron have confirmed the cardioprotective effects of α_{1A}-AR activation, and these compounds are considered clinical candidates to treat heart failure.

No selective ligands, however, exist for α_{1B}-AR. α_{1B}-AR-selective antagonists have been actively pursued by several groups, resulting in the identification of (+)-cyclazosin, conopeptide μ-TIA, L-765314, and AH 11110A, each of which reportedly exhibits no more than 10–24-fold selectivity.
for α_{1B}-AR over other α_1-adrenoceptor subtypes. A recent study on these reportedly subtype-selective α_1-adrenoceptor ligands investigated 101 clinical drugs and laboratory compounds but did not identify a single ligand with preference for α_{1B}-AR over α_{1A}-AR and α_{1D}-AR. There is, therefore, a need to develop new selective α_{1B}-AR ligands to further characterize this important receptor and its roles in normal physiology and disease.

In the past decade, advances in GPCR structural biology have provided many structures of the β-ARs in both active and inactive states and, more recently, structures of α_{1A}-AR, α_{2A}-AR, α_{2B}-AR, and α_{2C}-AR. These studies provide valuable information for understanding subtle structural differences between β- and α_2-AR subtypes and have enabled structure-based drug discovery (SBDD) of novel selective ligands.

Recently, we determined the crystal structure of the α_{1B}-AR bound to the modestly α_{1B}-AR-selective inverse agonist (+)-cyclazosin, representing an important resource to enable the development of α_{1B}-AR-selective compounds.

Since researchers have so far failed to identify highly α_{1B}-AR-selective compounds, we have undertaken a study using fragment screening as an alternate avenue for selective hit identification. Fragment screening is a well-validated starting point for SBDD and involves screening small, chemically diverse libraries of low molecular weight (~300 Da) “fragments” for binding to a protein target. Because of their small size, fragments usually bind with weak affinity, which often prevents testing in cell-based GPCR functional assays, instead requiring the use of biophysical methods to measure binding, such as ligand-observed nuclear magnetic resonance (NMR) and surface plasmon resonance (SPR).

For these methods, the proteins of interest must be relatively pure and stable in solution over time. Due to the dynamic nature of GPCRs and their instability upon purification, there are a few published examples of GPCR fragment
screening using biophysical studies, with most of these requiring engineered receptor mutants.

In the current work, we aimed to use fragment screening methods to identify subtype-selective α_1-AR ligands with novel chemical scaffolds and clear subtype selectivity. Screening was conducted by NMR against the stabilized α_1-AR variants, α_{1A}-AR-A4 and α_{1B}-AR-B1, using a subset of the Vernalis fragment library. One fragment (Cpd1) was identified to preferentially bind to α_{1B}-AR-B1 over α_{1A}-AR-A4. A combination of ligand binding, receptor signaling assays, docking, molecular dynamics (MD) simulations, and site-directed mutagenesis studies was used to validate Cpd1 as an α_{1B}-AR-selective antagonist, to identify the Cpd1 binding pocket, and to determine the molecular basis of Cpd1 selectivity for α_{1B}-AR. Finally, we probed the structure–activity relationship (SAR) of Cpd1 by screening an additional 23 commercially available analogues. The SAR screen identified Cpd24 to be a more potent analogue of Cpd1 with a weaker selectivity for α_{1B}-AR. Rational design of further analogues, guided by the chemical structures of Cpd1, Cpd24, and the α_{1B}-AR crystal structure, will help identify optimized ligands that retain the desired subtype selectivity. Such compounds will be important tools to probe the exact physiological roles of specific α_{1}-AR subtypes and to examine their potential as targets for treating disease.

RESULTS

Identification of 4-[(2-Hydroxyethyl)amino]-6-methyl-2H-chromen-2-one (Cpd1) as an α_{1B}-AR-Selective Antagonist. We previously engineered stabilized α_{1A}-AR and α_{1B}-AR variants using Cellular High-throughput Encapsulation, Solubilization, and Screening (CHESS) and demonstrated that purified preparations of these receptors can be used to explore small-molecule ligand binding with STD NMR, a mainstay technique used for fragment screening. CHESS-stabilized variants of human α_{1A}-AR and α_{1B}-AR, named α_{1A}-AR-A4 and α_{1B}-AR-B1, respectively, were used in this study. When expressed in COS-7 cells, α_{1A}-ARA-4 and α_{1B}-AR-B1 exhibit no signaling efficacy in response to agonist stimulation. However, the high stability and ligand-binding competency of α_{1A}-AR-A4 and α_{1B}-AR-B1 in solution makes them suitable candidates for NMR- or SPR-based fragment screening. Therefore, as a trial, 56 compounds from the Vernalis fragment library were screened against both receptors using NMR (data not shown). 4-[(2-hydroxyethyl)amino]-6-methyl-2H-chromen-2-one (Cpd1) (Figure 1A) was identified as a preliminary hit against both α_{1A}-AR-A4 and α_{1B}-AR-B1 (Figure 1A,B). However, using competition STD NMR, Cpd1 was shown to specifically bind and compete with epinephrine at α_{1B}-AR-B1, but compete to a lesser degree with epinephrine at α_{1A}-AR-A4 (Figure 1C,D), suggesting Cpd1 is a potential scaffold for the design of novel α_{1B}-AR-selective ligands.

Since the screening and STD-NMR validation were performed on detergent-solubilized, stabilized receptor preparations, the activity of Cpd1 was validated in cell-based assays with human wild-type (WT) α_{1A}-AR and α_{1B}-AR and α_{1D}-AR. COS-7 cells are fibroblast-like kidney cells from green African monkey and are well-established mammalian cell lines for assaying α_1-AR activity. The binding of Cpd1 to COS-7 cells transiently expressing WT α_{1A}-AR was determined in a flow cytometry-based competition binding assay against the fluorescent antagonist QAPB (quinazoline piperazine BODIPY, also termed BODIPY FL prazosin). Cpd1 partially displaced QAPB at α_{1B}-AR expressing cells in a concentration-dependent manner with an estimated equilibrium inhibition constant (pK) of 4.76 ± 0.11. In contrast, Cpd1 showed substantially weaker competition against QAPB at α_{1A}-AR expressing cells (Figure 1B, Table S1). No detectable QAPB binding was observed for WT α_{1D}-AR, which is known to be poorly expressed at the cell surface. An N-terminally truncated α_{1D}-AR variant ($\Delta 1−79$ α_{1D}-AR), which has been reported to have improved cell-surface expression with minimal effects on ligand pharmacology, was thus used for α_{1D}-AR ligand-binding studies. Cpd1 could not compete with QAPB at this receptor variant (Figure 1B, Table S1).

All three α_1-AR subtypes signal primarily through the $\mathrm{G}_\text{a}_{q/11}$ protein leading to the activation of phospholipase C (PLC), which catalyzes the formation of inositol triphosphate and diacylglycerol (DAG), resulting in the release of Ca$^{2+}$ from the endoplasmic reticulum. We used a Ca$^{2+}$ mobilization assay as a measure of α_1-AR activation downstream of $\mathrm{G}_\text{a}_{q/11}$ activation. COS-7 cells stably expressing either human WT α_{1A}-AR, α_{1B}-AR, or α_{1D}-AR, or transiently expressing $\Delta 1−79$ α_{1D}-AR were tested in this assay. At 500 µM, Cpd1 caused a rightward shift in the phenylephrine dose–response curve at α_{1B}-AR expressing cells but did not change phenylephrine potency or efficacy at α_{1A}-AR, α_{1D}-AR, or $\Delta 1−79$ α_{1D}-AR expressing cells (Figure 1E–F).

Phenylephrine-induced α_1-AR activation results in the accumulation of DAG, which activates protein kinase C (PKC), leading to the activation of the cAMP response element (CRE) binding protein to upregulate CRE-controlled genes. The α_{1B}-AR selectivity of Cpd1 was further confirmed in a CRE reporter assay, where Cpd1 was more potent at inhibiting phenylephrine-induced CRE response at α_{1B}-AR compared to α_{1A}-AR (Figure S2A, Table S1).

Since most preclinical drug evaluation efforts are carried out on rodents and considering interspecies variability in ligand pharmacology, it is important to test whether Cpd1 can inhibit rodent α_1-ARs. Cpd1 was tested on rat WT α_1-AR transiently expressed in COS-7 cells. As observed for the human WT receptors, Cpd1 showed selectivity for WT rat α_{1B}-AR over α_{1A}-AR (Figure S2B,C, Table S1). The ability of Cpd1 to inhibit phenylephrine-induced contraction of small resistance mesenteric arteries isolated from rats was tested. At least one study has suggested that α_{1B}-AR is the predominant α_1-AR subtype expressed in mesenteric arteries and serves to promote vessel constriction upon catecholamine-induced activation. As shown in Figure 1G, Cpd1 exhibited potent dose-dependent inhibition of phenylephrine-induced contraction of the mesenteric arteries. Cpd1 activity was then tested in abdominal aorta isolated from rats, a tissue whose contractions in response to phenylephrine are believed to result from the activation of α_{1D}-AR. Like the mesenteric artery data, Cpd1 was able to cause large, dose-dependent inhibition of phenylephrine-induced contractions of this tissue (Figure 1H). Given the lack of Cpd1 binding and antagonist activity at WT α_{1D}-AR and $\Delta 1−79$ α_{1D}-AR in COS-7 cells (Figure 1B,F), it is likely that rat abdominal aorta contractions are mediated by a combination of α_1-AR subtypes, with these data suggesting that α_{1B}-AR contributes significantly.

We examined the activity of Cpd1 to other members of the adrenoceptor family (α_1-ARs and β-ARs) by performing bioluminescence resonance energy transfer (BRET)-based G protein activation assays. The prototypical α_1-AR agonist,

https://doi.org/10.1021/acschemneuro.3c00767
clonidine, resulted in a dose-dependent activation of the Gaα3
protein at WT human α2A-AR, α2B-AR, and α2C-AR (Figure S3A). At 500 μM, Cpd1 did not have antagonist activity at α2A-AR or α2C-AR but caused a small rightward shift in the clonidine dose–response curve at α2B-AR (Figure S3A). At WT human β-ARs, the prototypical β-AR agonist, isoprenaline, resulted in a dose-dependent activation of the Gaα protein (Figure S3B). At 500 μM, Cpd1 did not have antagonist activity at β1-AR, β2-AR, or β3-AR (Figure S3B).

In the mesenteric artery and aorta assays, the rightward shift in the phenylephrine and aorta assays, the rightward shift in the phenylephrine dose–response curve was significantly larger than that observed in the COS-7 cells (Figure 1G,H). While part of the rightward shift in these assays is likely due to Cpd1 binding to α1B-AR, Cpd1 could also be inhibiting vasoconstriction by blocking α1C-AR, contributing to the larger rightward shift compared to COS-7 cells expressing α1B-AR only. Indeed, it has been reported that α1B-AR is responsible for mediating vasoconstriction in some vascular beds. Overall, our results confirm that Cpd1 is an antagonist that preferentially binds to α1B-AR over α1A-AR and α1D-AR. Among all the other six adrenoceptors, Cpd1 also weakly binds to α2B-AR.

Ligand Docking and Molecular Dynamics Simulations Define Cpd1 Binding Site and Determinants of α1B-AR Selectivity. To understand the molecular basis of Cpd1 binding and selectivity for α1B-AR, ligand docking and MD simulations were performed. Homology models of WT α1A-AR and α1B-AR were made using the (+)-cyclazosin-bound α1B-AR crystal structure (PDB: 7B6W) as a template. MD simulations were run on the (+)-cyclazosin-bound homology models of WT α1A-AR and α1B-AR, revealing that (+)-cyclazosin remained stably bound to the models over a 400 ns simulation (Figure S4A–D) and therefore the models were suitable for Cpd1 docking. Cpd1 was able to favorably bind in a nearly identical position into the cyclazosin-binding pocket of the homology models of both WT α1A-AR and α1B-AR (Figure 2A–D). The plane of the coumarin moiety in Cpd1 aligns parallel to transmembrane helix 3 of both α1A-AR and α1B-AR, as seen with the quinazoline ring of (+)-cyclazosin bound to α1A-AR and α1B-AR (Figure S4C,D). MD simulations were used to establish the stability of this predicted binding pose in both α1A-AR and α1B-AR. Cpd1 was stable in the docking site of α1B-AR during 3 replicates 400 ns simulations, evidenced by the low and consistent ligand root-mean-square deviation (RMSD) of Cpd1 heavy atoms (Figure 2F), similar to (+)-cyclazosin bound to the same receptor (Figure S4B). Conversely, docked Cpd1 was not stable in the α1A-AR (Figure 2E), whereas the RMSD of (+)-cyclazosin docked in the α1A-AR model remained stable (Figure S4B). The increasing RMSD of Cpd1 over time during the α1A-AR simulation may indicate less favorable interactions between Cpd1 and α1A-AR at this proposed binding site compared to α1B-AR, consistent with our ligand-binding analysis.

We hypothesized that the selectivity of Cpd1 for α1B-AR is due to amino acid differences between α1A-AR and α1B-AR within the proposed binding site of Cpd1. The residues lining the binding pocket of Cpd1 in both receptors differ in extracellular loop 2 (ECL2) and the top of transmembrane domain 6 (TM6) (Figure 2A–D). In our models, the binding surface of Cpd1 in α1B-AR includes the nonconserved residues valine 197 (V19745.52) in ECL2 and leucine 314 (L31445.55) in TM6, which correspond to isoleucine (I17845.52) and methionine (M2926.55) in α1A-AR (superscripts refer to Ballesteros-Weinstein numbering57). We hypothesized that the longer side chains of I17845.52 and M2926.55 in α1B-AR create a narrower pocket that sterically hinders Cpd1 binding (Figure 2B,D). Together, our docking and MD studies revealed a likely Cpd1 binding pocket in α1B-AR and provided insight into the potential molecular determinants of the observed α1B-AR selectivity of this compound.

Validation of the Cpd1 Binding Pocket Using Site-Directed Mutagenesis. To confirm the importance of V19745.52 and L31445.55 for Cpd1 binding in α1B-AR and validate our docking and MD observations (Figure 2), we undertook site-directed mutagenesis of the predicted binding
site. V19745,52 and L3146.55 were converted to the corresponding amino acids found in α\textsubscript{1A}-AR, generating α\textsubscript{1B}-AR (V197I), α\textsubscript{1B}-AR (L314M), and the double mutant α\textsubscript{1B}-AR (V197I, L314M). The corresponding mutations were also made on α\textsubscript{1A}-AR, generating α\textsubscript{1A}-AR (I178V), α\textsubscript{1A}-AR (M292L), and α\textsubscript{1A}-AR (I178V, M292L). Whole-cell QAPB saturation binding experiments showed that all mutated receptors expressed well at the cell surface and their expression levels were approximately double that of the respective WT receptor counterparts (Table S1). The equilibrium dissociation constant of the fluorescent antagonist QAPB (pK\textsubscript{D}) was not significantly altered at any of the α\textsubscript{1A}-AR mutants (Table S1). In α\textsubscript{1B}-AR, the mutations L314M and V197I had little or no impact on QAPB affinity (Table S1). The equilibrium inhibition constant (pK\textsubscript{I}) of prazosin, determined in competition binding assays against QAPB, was slightly, although significantly, enhanced at α\textsubscript{1B}-AR (M292L) and α\textsubscript{1A}-AR (I178V, M292L) compared to WT α\textsubscript{1A}-AR. Prazosin affinity for the α\textsubscript{1B}-AR mutants, however, was unchanged compared to WT α\textsubscript{1B}-AR (Table S1). Cpd1 caused the minimal displacement of QAPB at cells expressing each of the α\textsubscript{1A}-AR mutants (Figure 3A). Notably, all the α\textsubscript{1B}-AR mutants caused a substantial weakening of the affinities of Cpd1 (Figure 3B and Table S1), confirming the importance of the V19745,52 and L3146.55 side chains for Cpd1 binding to α\textsubscript{1B}-AR.

The antagonistic effects of Cpd1 were then tested on the WT and mutated receptors transiently expressed in COS-7 cells using a Ca2+ mobilization assay. Before testing Cpd1, a phenylephrine dose–response curve was generated at each of the transiently expressed WT and mutated receptors to determine its EC\textsubscript{50} (Figure S5 and Table S1). Similar to the stable cell lines, the potency of phenylephrine remained close to 10 nM in COS-7 cells transiently expressing either WT α\textsubscript{1A}-AR or WT α\textsubscript{1B}-AR. The potency and efficacy of phenylephrine remained unchanged at COS-7 cells expressing α\textsubscript{1A}-AR (M292L), α\textsubscript{1A}-AR (I178V, M292L), α\textsubscript{1B}-AR (V197I), or α\textsubscript{1B}-AR (V197I, L314M), relative to their WT counterparts. Phenylephrine potency was significantly reduced at α\textsubscript{1A}-AR (I178V) and α\textsubscript{1B}-AR (L314M) (Figure S5 and Table S1). Cpd1 was then tested for its ability to inhibit phenylephrine-induced Ca2+ mobilization at each of the WT and mutant receptors (for this assay, a phenylephrine concentration equal to its EC\textsubscript{50} was used). Consistent with the binding data (Figure 3B), the potency of Cpd1 in inhibiting phenylephrine-induced Ca2+ mobilization was largely weakened at cells expressing either α\textsubscript{1B}-AR (V197I), α\textsubscript{1B}-AR (L314M), or α\textsubscript{1B}-AR (V197I, L314M), compared to WT α\textsubscript{1B}-AR (Figure 3D, Table S1), further validating the importance of V19745,52 and L3146.55 in Cpd1 binding to α\textsubscript{1B}-AR. Conversely, there was no significant change in the potency of Cpd1 in inhibiting phenylephrine-induced Ca2+ signaling in cells expressing any of the mutant α\textsubscript{1A}-ARs compared to WT α\textsubscript{1A}-AR (Figure 3C, Table S1). Together, these data support the location of Cpd1 binding site in α\textsubscript{1B}-AR predicted by the docking and MD study and validate the involvement of the V19745,52 and L3146.55 side chains in improving the binding affinity of Cpd1 for α\textsubscript{1B}-AR and thus increasing its selectivity over α\textsubscript{1A}-AR.

SAR Studies Identify a Higher Affinity Analogue of Cpd1. To further probe the SARs of Cpd1, and with the aim of increasing compound potency and fold-α\textsubscript{1B}-AR selectivity, we selected a set of 23 commercially available analogues based around the coumarin (2H-chromen-2-one, 2H-benzopyran-2-one) core of Cpd1 (Cpds 2–24, Tables S2 and S3). Most of these compounds retain the core coumarin scaffold of Cpd1, but varied in their amino acid substituents and their functional groups. The α\textsubscript{1A}-AR and α\textsubscript{1B}-AR activity of these compounds was measured using the fluorophore binding assay and Ca2+ mobilization assay, respectively. Most of these compounds retained the binding core of Cpd1, but showed decreased α\textsubscript{1B}-AR activity. The α\textsubscript{1A}-AR activity was not significantly altered in most analogues, and was largely unaltered in a few compounds (Cpds 3, 4, 7, 11, and 12). However, some analogues showed significantly reduced α\textsubscript{1A}-AR activity, such as Cpd 24, which showed a 30-fold reduced α\textsubscript{1A}-AR activity compared to Cpd1. These data suggest that the α\textsubscript{1B}-AR binding core of Cpd1 is conserved across the analogues, but the α\textsubscript{1A}-AR binding core is more flexible, allowing for a broader range of analogues to retain α\textsubscript{1A}-AR activity.
with a range of substitutions at position 4. Cpd23 and Cpd24 have a 6-methylquinolin-2(1H)-one core with substitution at position 3 in Cpd24 (Table S1).

Compounds were screened for their ability to (1) displace QAPB or [3H]-prazosin at 500 μM; (2) inhibit phenylephrine-induced receptor activation at 100 μM; and (3) produce a response in a Ca\(^{2+}\) mobilization assay at 500 μM in untransfected COS-7 cells or cells expressing either WT α\(_{1A}\)-AR or WT α\(_{1B}\)-AR (Tables S2 and S3). As expected, the prototypical nonselective α\(_{1}\)-AR agonist phenylephrine and the antagonist phentolamine, fully displaced QAPB at both subtypes (Table S2). Cpd1, 14, 19, 20, 23, and 24 significantly displaced QAPB at both receptor subtypes, with Cpd24 causing full displacement (Table S2). Notably, Cpd19, 20, and 24 were able to displace QAPB more effectively than Cpd1 at α\(_{1B}\)-AR expressing cells, suggesting higher affinity than Cpd1 (Table S2). Next, the ability of the compounds to act as antagonists in a functional assay was tested. Preincubating cells expressing either α\(_{1A}\)-AR or α\(_{1B}\)-AR with 100 μM phenolamine or Cpd24 fully inhibited the Ca\(^{2+}\) mobilization response elicited by 10 nM phenylephrine at both receptors (Table S2). At 100 μM, Cpd1, 7, 12, 17, 19, and 21 significantly inhibited phenylephrine-induced Ca\(^{2+}\) signaling only at cells expressing α\(_{1B}\)-AR, while Cpd10, 11, and 20 caused significant inhibition of phenylephrine-induced Ca\(^{2+}\) signaling both in cells expressing either α\(_{1A}\)-AR or α\(_{1B}\)-ARs (Tables S2 and S3). None of the compounds screened caused significant α\(_{1A}\)-AR-selective inhibition of phenylephrine-induced Ca\(^{2+}\) signaling at cells expressing α\(_{1A}\)-AR over those expressing α\(_{1B}\)-AR.

The SAR series of compounds were subsequently tested for their ability to induce an agonist response in cells expressing either WT α\(_{1A}\)-AR or WT α\(_{1B}\)-AR. Nontransfected COS-7 cells were used as a negative control. At 500 μM, Cpd9, 12, and 17 produced nonreceptor-specific Ca\(^{2+}\) mobilization responses in untransfected COS-7 cells (Table S4). Cpd24 also produced Ca\(^{2+}\) mobilization responses in untransfected COS-7 cells, however, this was due to the higher concentration of dimethyl sulfoxide (DMSO, 5%) present in this sample, rather than nonreceptor-specific agonist activity. A similar calcium signal was observed when 5% DMSO alone was added to untransfected COS-7 cells (18.47 ± 1.05). Furthermore, Cpd13, 14, and 21 produced significant, although weak, agonist activity in cells expressing either α\(_{1A}\)-AR or α\(_{1B}\)-AR, while the remaining compounds did not have any agonist activity (Tables S2 and S3).

Based on the results of the initial, single-concentration screen, full competition dose–response curves were obtained against QAPB for Cpd14, 19, 20, 23, and 24 at cells expressing either WT α\(_{1A}\)-AR or WT α\(_{1B}\)-AR, to derive pK\(_{b}\) values (Figure 4A,B). Relative to Cpd1, only Cpd24 showed significant improvement in affinity (~100-fold higher than Cpd1) toward both α\(_{1A}\)-AR and α\(_{1B}\)-AR, while the affinities of Cpd14 and Cpd23 were significantly reduced for α\(_{1B}\)-AR. Despite the affinity improvement of Cpd24, its preference for α\(_{1A}\)-AR over α\(_{1B}\)-AR was smaller than Cpd1 (Figure 4 and Table S2).

The binding and functional data obtained for this SAR series of compounds indicate that the methyl group at position 6 of Cpd1 is important for its affinity and potency at α\(_{1A}\)-AR. When this methyl group is removed (Cpd2), the compound’s binding to inhibit the phenylephrine response is significantly attenuated at α\(_{1A}\)-AR (Table S3). The importance of this 6-methyl substituent of Cpd1 is also suggested in Cpd5–3. With substitution at position 4 is similar to Cpd1, but the methyl at position 6 is replaced with a hydrogen: Cpd5–3 did not significantly attenuate phenylephrine-induced Ca\(^{2+}\) mobilization at either α\(_{1A}\)-AR or α\(_{1B}\)-AR. Replacement of the

Figure 4. SAR screen of Cpd1 analogues and Cpd24 binding profile. QAPB equilibrium binding inhibition profile of Cpd1 and structural analogues tested at (A) WT α\(_{1A}\)-AR or (B) α\(_{1B}\)-AR. QAPB equilibrium binding inhibition profile of Cpd24 was tested at (C) WT α\(_{1A}\)-AR and the α\(_{1A}\)-AR mutants (I178V, M292L, and M292L) and (D) WT α\(_{1B}\)-AR and the α\(_{1B}\)-AR mutants (V197I, L314M, and V197I, L314M). Points represent the mean ± SE of at least three independent experiments performed in duplicate. Refer to Tables S1 and S2 for values.
methyl group at position 6 with a hydroxyl group seems also not well tolerated, as in Cpd6 (Table S3). In Cpd7, where the moiety at position 4 is changed to a piperidine ring while the methyl group at position 6 remains compared to Cpd1, the functional α1B-AR antagonism is present, although it appears weaker than Cpd1 (Table S3). When an imidazole group is introduced to the coumarin side chain at position 4, while leaving the methyl group at position 6 (Cpd14), the α1B-AR antagonist activity of Cpd1 is lost and, instead, Cpd14 has weak agonist activity at both α1A-AR and α1B-AR (Table S2). The agonist activity at both receptors is lost when the methyl group of Cpd14 is replaced with a hydroxyl group at position 6, as seen in Cpd15–16 (Table S3). Off-target agonist activity is observed (in cells not transfected with α1A-AR and α1B-AR) when the methyl group in position 6 is replaced with an ethyl group as in Cpd17 (Tables S3 and S2). The presence of a methyl group at position 7 (Cpds 16 18, 19, and 20) may lead to the loss of the agonist activity seen in Cpd14 while having an additional methyl group at position 5 (Cpd19) seems to improve α1B-AR selectivity as an antagonist (Figure 4B and Tables S2 and S3). Interestingly, adding a 5-membered ring to form an Indane (Cpd21) results in weak agonist activity in cells expressing either α1A-AR or α1B-AR. Cpd21 also seems to have antagonist activity at α1B-AR (Table S3). The observed antagonist activity of Cpd21 may be due to the depletion of intracellular calcium stores or receptor desensitization, as the cells are preincubated with ligands before the addition of phenylephrine during the experiment. In this case, the cells were preincubated with an agonist (Cpd21) before the addition of another (phenylephrine), making interpretation of this result difficult. An amino furan substitution at position 4 (Cpd22) resulted in no detectable binding or Ca2+ response at α1A-AR and α1B-AR. Cpds8–10 contain aminoazene substitutions at position 4, which is extended by 1 and 2 carbons in Cpds11 and Cpds12, respectively. The aminoazene group substitution alone (Cpd8) leads to weak but not significant antagonist activity at α1B-AR and this seems to be rescued by the addition of a hydroxyl group at C3 of the benzene ring (Cpd10) or extending the chain between the amine group and the benzene ring by one or two carbons as seen for Cpds11–12 (Table S3). Interestingly, the removal of the coumarin oxygen in Cpd1 and replacing it with a nitrogen (Cpd23) results in a very weak affinity ligand that loses most of its antagonist function and α1B-AR selectivity (Figure 4 and Table S2). However, introducing a cyclo moiety at position 3 of Cpd23 leads to Cpd24, a higher affinity ligand than Cpd1 with a preference for α1B-AR that is smaller than Cpd1. This highlights the importance of the coumarin scaffold for the α1B-AR selectivity observed with Cpd1.

The SAR study has identified Cpd19 as having similar affinity, antagonist potency, and α1B-AR selectivity profile to Cpd1. Cpd20 displayed a similar profile to Cpd19 albeit with weaker antagonist potency at α1B-AR (Figure 4A,B, Table S2). The study also identified that when the only change to Cpd1 is at position 4 to an imidazole aromatic ring, an α1A-AR agonist is the result (Cpd14), while Cpd19–20, which also contain the imidazole ring at position 4 but have additional methyl groups at position 5 (Cpd19) or 7 (Cpd20) result in antagonists. Therefore, subtle changes at positions 5 and 7 of the coumarin cause the shift from antagonist to agonist. The coumarin core scaffold appears to be important for α1A-AR selectivity, while having a cyclohexyl amino moiety at position 3 may confer higher affinity to the ligands as in Cpd24.

Characterization of Cpd24. To further understand the molecular determinants of the improved affinity of Cpd24, we investigated its binding profile at α1A-AR (1178V), α1A-AR (M292L), and α1B-AR (I1178V, M292L), as well as at α1B-AR (V1971) and α1B-AR (L314M). The α1A-AR mutants had only subtle effects on Cpd24 binding affinity, with M292L being the only mutant with a significantly reduced affinity (Figure 4C,D). The α1B-AR mutants had more pronounced effects on Cpd24 binding with V1971 and the double mutant (V1971, L314M) having statistically significant reduced affinity (Figure 4D, Table S1). In docking and MD simulation studies with Cpd24, the quinolinone plane of Cpd24 binds parallel to TM3 in the α1B-AR and α1B-AR homology models. In both receptors, the cyclohexyl ring of Cpd24 projects upward and forms hydrophobic interactions with the aromatic side chain of W102 (V10228 in α1A-AR and W121128 in α1B-AR) at the top of TM3 (Figure S). The cyclohexyl moiety is similarly positioned as the cis-decahydroquinoline ring of (+)-cycloclazosin and is predicted to share similar receptor interactions (Figure S4C,D). These additional hydrophobic interactions may be driving the higher affinity of Cpd24 for α1A-AR and α1B-AR compared to Cpd1 (Figure 2). MD simulations validated the stability of the predicted binding pose of Cpd24 in α1B-AR (Figure SC). Two out of three 400 ns simulations of Cpd24 showed that it remained stable in the binding site of α1B-AR, evidenced by the low and consistent ligand RMSD plotted over the duration of the simulations (Figure SC), which closely resembled the RMSD of (+)-cycloclazosin bound to the α1A-AR and α1B-AR (Figure S4B).

II DISCUSSION

Emerging evidence implicates the importance of α1-ARs in the CNS, the cardiovascular, and the immune systems and places them as potential therapeutic targets to treat various disorders. Subtype-selective α1-ARs ligands will be essential to study and fully exploit these receptors as therapeutic targets. Despite decades of research, ligands highly selective for α1B-AR are still lacking, and the physiological and pathophysiological roles of this receptor subtype remain incompletely understood. While α1B-AR is nonselectively targeted (along with α1A-AR and α1D-AR) in cardiovascular and genitourinary diseases, its role in other important organs where it is more abundantly expressed (such as the brain, liver, ovaries, spleen, and kidney) remains to be explored. The discovery of a tool antagonist with greater than 10-fold selectivity for α1B-AR over α1A-AR and α1D-AR would allow researchers to more confidently assign particular physiological actions of catecholamines to α1B-AR stimulation specifically. This, in turn, may reveal a role for selective α1B-AR modulation as a means to treat disease. It is important to note that while α1B-AR preferring antagonists already exist (see Introduction section) they are not sufficiently selective and new chemical scaffolds are needed for selective tool molecule development, which is what the present study aimed to address.

In this study, we have identified Cpd1, a novel smallmolecule antagonist with modest (10–15-fold) selectivity for α1B-AR over α1A-AR and α1D-AR. The pharmacology of Cpd1 has been characterized using multiple approaches including fluorescent and radioligand-binding assays, intracellular signal-
We propose that the α_{1B}-AR selectivity of Cpd1 is likely due to amino acid differences in the binding pocket of Cpd1 in α_{1B}-AR versus α_{1A}-AR and α_{1D}-AR. Our modeling studies suggest that the longer side chains of corresponding residues in α_{1A}-AR (I178V654,28 and M292K655) sterically hinder Cpd1 binding as opposed to the relatively shorter side chain of V197K652 and L314L655 in α_{1B}-AR (Figure 2B,D). Indeed, ligand-binding pocket shapes and/or volumes have been shown to influence ligand affinity in both β_1-AR61 and α_{1A}-AR.69 Mutagenesis of V197K652 and L314L655 in α_{1B}-AR to the corresponding residues in α_{1A}-AR (V197L and L314M) reduced the potency of Cpd1 at these mutants (Figure 3 and Table S1) which supports our binding model. However, our hypothesis was not supported by the mutagenesis of α_{1A}-AR residues I178K654 and M292K655 to the corresponding α_{1B}-AR residues (I178V and M292L) such that we could not improve Cpd1 binding (Figure 3 and Table S1). Given the low binding affinity of Cpd1, especially at α_{1A}-AR, it is likely that I178V and M292L are not sufficient to allow stable binding of Cpd1. Other factors that may contribute to the selectivity of Cpd1 include the path Cpd1 may take into the binding pocket56,63 or the involvement of highly flexible residues adjacent to V197K652 in ECL2, which have been previously identified to contribute toward α_{1A}-AR and α_{1B}-AR selectivity.69 Given the enormous difficulty in achieving drug selectivity between closely related GPCRs subtypes,65 and the lack of highly subtype-selective ligands for α_{1B}-AR,6,6 we explored the SAR space of Cpd1. The fragment-like size of this molecule allows for significant diversification,52 potentially allowing the development of novel higher affinity α_{1B}-AR-selective ligands.

Our identification of Cpd1 raises the prospect that the coumarin core structure may enable the development of new compounds in this class. Coumarins are "privileged structures" that possess a variety of pharmacological activities depending on their substitution pattern.66 Coumarin derivatives with antitumor67–69, anticoagulant,70 and antiviral71 effects have been described. Other coumarin derivatives have pharmacological activity at a range of GPCRs including niacin, cannabinoid, histamine, 5-HT receptors and GPR55.72–75 Zhou et al. describe the replacement of the piperazinylquinazoline moiety of prazosin with various coumarin-piprazine rings to generate novel α_1-AR antagonists.76 However, these antagonists were only tested on the α_{1A}-AR subtype and some had comparable or weaker pK_I values to prazosin. Other groups have also described coumarin-piperazine derivatives as serotonin and dopamine receptor binding ligands,77 and to a lesser extent α_2-AR ligands,78,79 again focusing only on the α_{1A}-AR subtype. Furthermore, a recent study showed that 7-hydroxycoumarin induces vaso-relaxation in hypertensive rats and diminishes rat mesenteric arteries’ responsiveness to α_1-AR agonists challenge.80 Thus, the potential of the coumarin scaffold for developing novel, selective α_1-adrenoceptor ligands has preceded.

Testing of additional compounds containing the coumarin scaffold (Cpd2–22) did not identify any with significantly improved affinity and/or α_{1B}-AR selectivity over Cpd1 (Figure 4A,B, Tables S2 and S3). However, Cpd24, with the structurally similar 6-quinolin-2(1H)-one core, had improved affinity toward both α_{1A}-AR and α_{1B}-AR and maintained a slight preference for α_{1B}-AR. Our docking studies found that the cyclohexyl ring of Cpd24 forms hydrophobic interactions with the aromatic side chain of W121K656 in α_{1B}-AR at the top of TM3, likely driving the higher affinity of Cpd24 in a similar way as (+)-cyclohexazin, albeit making fewer interactions due to its smaller size.

![Image](https://doi.org/10.1021/acschemneuro.3c00767)
way to the cyclohexyl ring of the decahydroquinazoline moiety cyclazosin (Figure 5).30 L3146,55 is positioned deeply at the bottom of the orthosteric ligand-binding pocket in the α_{1B}-AR crystal structure (Figure S4),30 contributing to a hydrophobic patch that makes contact with the dimethoxyquinazoline moiety of inverse agonists such as cyclazosin and QAPB. While the involvement of L3146,55 in ligand binding is confirmed for QAPB in the current study (Table S1), the presence of Leu at position 314 of α_{1B}-AR appears to be less important for the binding of Cpd1 and Cpd24, as evident by a weaker reduction in binding affinities at the L3146,55M mutation compared with V19745,52 (Figures 3–4 and Table S1). On the other hand, M29245,55,L in α_{1A}-AR significantly affects Cpd24 binding (Figure 4C, Table S1). Although not evident in our models, this suggests that Cpd1 and Cpd24 may bind to a more superficial area within the orthosteric ligand-binding pocket in α_{1B}-AR and make more intimate interactions with V19745,52. Indeed, the interaction of Cpd1 and Cpd24 with V19745,52 may be the reason for the preferred binding of these compounds to the α_{1B}-AR subtype, as the equivalent residues in both α_{1A}-AR and α_{1D}-AR are isoleucine rather than valine. This residue (45.S2) has been suggested to play a role in determining ligand subtype selectivity.56,64 Zhao et al. also identified adjacent residues in ECL2 (G1966,51 and T198) to play a role in antagonist selectivity at α_{1B}-AR.64 Furthermore, residue 6.55 (L3146,55 in α_{1B}-AR) has previously been identified to be determinant in α_{1A}-AR subtype-selective agonist binding24 and a contributor to α_{1B}-AR over α_{1D}-AR selectivity of piperazinyl-quinazoline compounds in α_{1B}-AR.30 In α_{1A}-AR, α_{1B}-AR, and α_{1D}-AR, residue 6.55 has been identified as a key nonconserved residue that belongs to the ligand-binding pocket and controls adrenergic receptor diversity.24–27

When considering the data on rat isolated abdominal aorta, a tissue traditionally believed to highly express the α_{1D}-AR subtype, Cpd1 potently inhibits phenylephrine-induced contractions (Figure 1H) despite showing no binding or antagonist activity in assays using COS-7 heterologously expressing α_{1D}-AR (Figure 1B,E,F). This is in line with previous reports showing the contractions in rat aorta are attributable to more than one subtype of adrenoceptor.82,83 This affirms the need to develop subtype-selective tools to clear misconceptions regarding the expression and functional significance of specific receptor subtypes in various tissues. Much of the older studies in the α_{1}-AR field relied on nonspecific ligands, global gene knockout mice, or antibodies to assign α_{1}-AR subtypes to specific tissues, resulting in a myriad of contradictory reports. Overall, this study has identified Cpd1 as an α_{1B}-AR antagonist with 10–15-fold selectivity over α_{1A}-AR and α_{1D}-AR and revealed the molecular basis of α_{1B}-AR selectivity, where the nonconserved V19745,52 residue plays a major role and L3146,55 is also possibly involved. Such a tool compound can be optimized and used to probe the exact physiological roles of specific α_{1}-AR subtypes and to examine their potential as targets for treating disease.

METHODS

Reagents. Human α_{1A}-AR, α_{1B}-AR, α_{1D}-AR, and $\Delta1–79$ α_{1D}-AR mammalian expression vectors pCSC-receptor-strep-IRESe.mCherry were purchased from GenScript. Prazosin, phenylephrine, phenolamine, isoprenaline, clonidine, and probenecid were purchased from Sigma-Aldrich. BODIPY FL prazosin (QAPB), Fluor-4 AM, and cell culture reagents were purchased from ThermoFisher Scientific. [H]-Prazosin and Ultima Gold liquid scintillation vials were purchased from PerkinElmer. Cpd1 and its analogues Cpd2–22 and Cpd24 were purchased from Vitus-M Laboratories and ChemSpace.Hi2Lead. Cpd23 was custom synthesized by Synthesis MedChem. Nano-Glo Luciferase Assay Substrate was purchased from Promega.

STD NMR. Stabilized human α_{1A}-AR-A4 and α_{1B}-AR-B1 were expressed and purified from Escherichia coli as previously described.30,39,40 The fusion protein-cleaved α_{1A}-AR-A4 samples were prepared containing 5 μM receptor (for STD experiment) or 10 μM (for STD competition experiments) in 500 μL of phosphate buffer (50 mM potassium phosphate, 100 mM NaCl, pH 7.4) containing 0.01% Laureyl Maltose Neopentyl Glycol (LMNG), 20% deuterated glycerol, and 10% 2H$_2$O in 5 mM NMR tubes. The cleaved α_{1B}-AR-A4 samples were prepared containing 5 μM receptor (for STD experiment) or 20 μM (for STD competition experiments) in 500 μL of phosphate buffer (50 mM potassium phosphate, 100 mM NaCl, pH 7.4) containing 0.05% n-dodecyl-β-d-maltopyranoside, 20% deuterated glycerol, and 10% 2H$_2$O in 5 mM NMR tubes. To avoid oxidation, all samples containing epinephrine were supplemented with 1 mM ascorbic acid. For STD-NMR experiments, samples contained 500 μL Cpd1, and for the STD-NMR competition experiments 500 μL epinephrine was used, with and without the addition of 600 μL Cpd1 (α_{1A}-AR-A4) or 100 μL Cpd1 (for α_{1B}-AR-B1). All NMR spectra were acquired at 25 °C on a 700 MHz Bruker Avance IIIHD spectrometer equipped with a 10 mm triple-resonance probe. STD NMR data were acquired with a saturation time of 3 s, using a train of 50 ns Gaussian pulses with a B1 field of 130 Hz, separated by 4 ms delays.80 The on- and off-resonance frequencies were −1 and 71.4 ppm, respectively. To suppress residual proton and water signals, a spin-lock pulse of 40 ms and excitation sculpting68 with gradients were employed, respectively. The relaxation delay between transients was set to 3.5 s. A total of 512 transients were averaged over 32,000 data points and a spectral width of 16 ppm. Prior to Fourier transformation, data were multiplied by an exponential function with 2 Hz line-broadening and zero-filled once. Data were analyzed with TopSpin 3.4 and MestReNova 10.0.2.

Flow Cytometry-Based Binding Assays. COS-7 cells grown in 10% FBS, 1% penicillin/streptomycin, and 1 mM ascorbic acid. For STD-NMR experiments, samples contained epinephrine were supplemented with 1 mM ascorbic acid. For STD-NMR experiments, samples contained 500 μL Cpd1, and for the STD-NMR competition experiments 500 μL epinephrine was used, with and without the addition of 600 μL Cpd1 (for α_{1A}-AR-A4) or 100 μL Cpd1 (for α_{1B}-AR-B1). All NMR spectra were acquired at 25 °C on a 700 MHz Bruker Avance IIIHD spectrometer equipped with a 10 mm triple-resonance probe. STD NMR data were acquired with a saturation time of 3 s, using a train of 50 ns Gaussian pulses with a B1 field of 130 Hz, separated by 4 ms delays.80 The on- and off-resonance frequencies were −1 and 71.4 ppm, respectively. To suppress residual proton and water signals, a spin-lock pulse of 40 ms and excitation sculpting68 with gradients were employed, respectively. The relaxation delay between transients was set to 3.5 s. A total of 512 transients were averaged over 32,000 data points and a spectral width of 16 ppm. Prior to Fourier transformation, data were multiplied by an exponential function with 2 Hz line-broadening and zero-filled once. Data were analyzed with TopSpin 3.4 and MestReNova 10.0.2.

Whole-Cell [H]-Prazosin Binding Assays. Competition ligand-binding assays using [H]-prazosin were performed on COS-7 cells stably expressing WT α_{1A}-AR and α_{1B}-AR. Cells were seeded at 17,000 cells per well into 96-well culture plates and allowed to grow overnight at 37 °C, 5% CO$_2$. Media were aspirated and the COS-7 cells were washed with 200 μL of PBS before radioiodination binding. Cells were incubated with 100 μL of HEM buffer (20 mM HEPES, 1.4 mM EGTA, 12.5 mM MgCl$_2$, 150 mM NaCl, pH 7.4) containing 2 nM [H]-prazosin with or without test ligand in triplicate for 1 h at
RT. Nonspecific binding was determined in the presence of 1 mM phenolamine. Cells were then quickly washed twice with 200 μL of cold PBS and lysed with 50 μL of 0.2 M NaOH for 30 min. The lysed cells in each well were then transferred to individual 6 mL plastic scintillation vials, and a total of 5 mL Ultima Gold liquid scintillation cocktail (PerkinElmer) was added to each vial and incubated for 30 min before measurement on a TriCarb β-Counter (PerkinElmer) for 3 min per vial. Data represent the mean ± SEM of three independent experiments performed in technical triplicates. Statistical analysis was performed using one-way ANOVA with statistical significance valued at P<0.05.

Ca2+ Mobilization Assays. Intracellular Ca2+ mobilization assays were performed on COS-7 cells either stably or transiently expressing α1A-AR, α1B-AR, α1D-AR, or Δ1−79 α1D-AR. For stable cell lines, cells were seeded at 35,000 cells per well into 96-well culture plates and allowed to grow overnight at 37 °C, 5% CO2. For transient cell lines, cells were seeded in 6-well plates at 300,000 cells per well and allowed to grow overnight at 37 °C, 5% CO2. The next day, the cells were transfected with receptor DNA (5 μg per well) using Lipofectamine 2000 transfection reagent as per the manufacturer’s instructions. After 24 h, the cells were seeded at 35,000 cells per well into 96-well culture plates and allowed to grow overnight at 37 °C, 5% CO2. On the day of the experiment, cells were washed twice with Ca2+-assay buffer (150 mM NaCl, 2.6 mM KCl, 1.2 mM MgCl2, 10 mM α-glucose, 10 mM HEPES, 2.2 mM CaCl2, 0.5% (w/v) BSA, and 4 mM probenecid, pH 7.4) and then incubated in Ca2+ assay buffer containing 1 mM Fluo-4 AM for 1 h in the dark at 37 °C and 5% CO2. Extracellular fluo-4-AM was then removed by washing the cells twice with 100 μL of Ca2+-assay buffer. Fluorescence was measured for 1.5 min after the addition of 10X concentrated phenylephrine or test compounds in a Flexstation plate reader (PerkinElmer) using an excitation wavelength of 485 nm, emission wavelength of 520 nm, and a final volume of 200 μL per well. To test the antagonist activity of the compounds, they were incubated with the cells for 30 min before stimulation with the agonist phenylephrine. All data are initially normalized to the peak response elicited by 3 μM ionomycin. When measuring the inhibitory effects of compounds on the phenylephrine response, data are further normalized to the response elicited by an EC50 concentration of phenylephrine. The phenylephrine Emax is ~80% in cells stably expressing WT α1A-AR and ~25% in cells stably expressing WT α1D-AR relative to the response elicited by 3 μM ionomycin. Transient expression of WT α1A-AR and α1B-AR and Δ1−79 α1D-AR receptors results in a phenylephrine Emax of ~25 and ~10% for WT α1D-AR (Figures 1C-E and S5). Data represent the mean ± SEM of three independent experiments performed in technical duplicates. Statistical analysis was performed using one-way ANOVA with statistical significance valued at P<0.05.

CprE-Based CRE (CprE) Reporter Assay. COS-7 cells stably expressing either α1A-AR or α1D-AR were plated at 25,000 cells/well in a 96-well CellBind plate (Corning) and transfected the next day with plasmid encoding pCprE/β-gal as a CRE-controlled reporter of CAMP activity.86 24 h post-transfection, the medium was removed, and increasing concentrations of phenylephrine or 5 μM forskolin, made up in DMEM, were added to the respective wells. The plate was then read and the absorbance was measured at 570 nm on a Bio-Rad plate reader. Phenylephrine EC50 values were initially determined to be 200 nM for α1A-AR and 800 nM for α1D-AR. To assess the antagonist activity of Cpd1, varying concentrations (ranging from 100 nM to 500 μM) were tested for inhibiting the response elicited by EC50 concentrations of phenylephrine (Figure S2) and assayed as described above. Data were normalized to the response induced by 5 μM forskolin (100%) and DMEM medium (0%). Data were then further normalized to the response elicited by the EC50 concentration of phenylephrine. Data represent the mean ± SEM of four independent experiments conducted in triplicates.

BRET-Based G Protein Activation Assays. COS-7 cells were plated in a six-well plate at 300,000 cells/well in complete DMEM. Cells were transfected 24 h later. For α1A-AR, cells were transfected with 750 ng/well of receptor DNA and 250 ng/well of Git3 BRET biotin DNA. For β1-ARs, cells were transfected with 2 μg/well of receptor DNA and 2 μg/well of Gos BRET biotin DNA.24 24 h later, cells were washed using phosphate-buffered saline (PBS) and resuspended in phenol red-free DMEM supplemented with 10% (v/v) FBS, 1% (v/v) l-glutamine, 1% (v/v) penicillin/streptomycin, and 25 mM HEPES (complete PRF-DMEM). Cells were plated in white opaque 96-well microplates (PerkinElmer) at 40,000 cells/well in 100 μL 24 h later, PRF-DMEM was aspirated and replaced with 80 μL of assay solution (ratio of 1 μL Nano-Glo Luciferase Assay Substrate (Promega): 450 μL PRF-DMEM for a 1:11x assay solution). Plates were equilibrated at 37 °C for 10−15 min in a PHERAstar FSX microplate reader (BMG LABTECH) (LUM 355 450 optics module). 10 μL of either 5% DMSO or 5 mM Cpd1 (made up in 1x assay solution with a ratio of 1 μL Nano-Glo Luciferase Assay Substrate (Promega): 500 μL PRF-DMEM) was then added to the cells and incubated for 20 min at 37 °C. After restarting the reader for ~3 min, the reader was paused, the plate ejected, and 10 μL of 10X clonidine or isoprenaline dilutions or vehicle manually dispensed before reads allowed to continue for 1 h. All assay solutions used for β-ARs also contained 0.1% ascorbic acid to prevent degradation of isoprenaline. The BRET ratio was defined as the ratio of the acceptor emission (530−535 nm) over the donor emission (450−480 nm). Net BRET ratios were calculated as the difference in the ratio of ligand-treated and vehicle-treated conditions. The area under the BRET curve was calculated to generate agonist dose−response curves, and data were normalized to the maximum signal observed for each agonist.

Functional Assays in Rat Isolated Arteries. Male or female Sprague–Dawley rats (250−350 g) were obtained from the Biomedical Animal Facility, University of Melbourne, Victoria, Australia. All animals were group-housed in a climate-controlled facility (21 ± 1 °C) with a 12 h dark/light cycle and free access to food and water. Rats were deeply anesthetized by inhalation of 5% isoflurane (Baxter Healthcare, Australia) in O2 and then euthanized by rapid decapitation. The abdomen was opened and approximately 10 cm of jejunum and its attached vascular fat and the descending abdominal aorta was removed and pinned out on a stainless steel Petri dish filled with ice-cold physiologic salt solution (PSS) with the following composition (119 mM NaCl; 4.69 mM KCl; 1.17 mM MgSO4, 2.2 mM CaCl2, 0.5% (w/v) BSA, and 4 mM probenecid, pH 7.4) and then saturated with carbogen (95% O2 and 5% CO2). Contractile responses were recorded with LabChart 7 and a PowerLab 4/30 A/D converter (AD Instruments Pty Ltd., Australia). To normalize to the basal conditions, the vessels were passively stretched according to a normalization protocol and adjusted to a diameter setting of 90% of that determined for an equivalent transmural pressure of 100 mmHg. After allowing the tissues to equilibrate for 30 min, the arteries were exposed to a potassium depolarizing solution (124 mM K+ replacing Na+ in PSS; termed KPSS) and noradrenaline (10 μM) for 2 min. A second exposure to KPSS solution (only) was used to provide a reference contraction. Contraction responses were assessed by performing cumulative response curves to phenylephrine (0.001–

https://doi.org/10.1021/acschemneuro.3c00767
300 μM in the absence (control) or presence of different concentrations of Cpd1 (100, 300, and 500 μM).

Homology Modeling. Homology models of WT α1A-AR and α1B-AR were made using the stabilized α1B-AR crystal structure bound to (+)-cyclazosin (PDB: 7B6W) using the ICM Homology package (Molsoft LLC). The stabilized α1B-AR template structure was primed for modeling by deleting the DARPin fusion protein. WT α1A-AR and α1B-AR models were made using the ‘full refinement’ tool, which uses the biased probability Monte Carlo algorithm and pairwise sequence alignment method with the stabilized α1B-AR crystal structure. Modeling was conducted with the co-crystallized ligand, (+)-cyclazosin, in the binding site and unresolved regions of the template structure (the N-terminus, ICL3, and C-terminus) deleted from our models (α1A-AR residues: 1–18, 219–261, 329–466; α1B-AR residues: 1–37, 238–283, 351–520).

Computational Docking and MD Simulations. Ligand binding poses in the homology models of WT α1A-AR and α1B-AR were generated using computational docking with ICM-Pro (Molsoft LLC). Docking was performed by creating a 25 × 25 × 25 Å box centered around (+)-cyclazosin. The most energetically favorable ligand docking outputs were collected, but some higher energy poses were also retained after being visually inspected.

MD simulations were performed using DESMOND MD simulation systems with the imported receptor–ligand structures from docking. The receptor–ligand complex was preprocessed and minimized using the protein preparation wizard tool before being placed in a 10 × 10 × 10 Å membrane environment of a 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine bilayer with water and salt. Simple point-charge water models were used with 0.15 M Na+ and Cl− ions in addition to 11 Cl− ions to neutralize the receptor. The protein and membrane environment was then relaxed through a series of MD simulations with the stabilized α1B-AR crystal structure. The membrane surface tension was set to 4000 bar/Å. MD data were gathered using VMD 1.9.386. Protein and ligand RMSD values were obtained using the RMSD visualizer tool. RMSD of ligands and protein backbone residues are relative to the receptor in its initial frame after the MD relaxation protocol described above.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acschemneuro.3c00767.

Competition STD-NMR data for Cpd1; Cpd1 activity in the CRE assay at human α1A-AR and α1B-AR and at QAPB binding and Ca2+ mobilization assays rat α1A-AR and rat α1B-AR; Cpd1 activity in cell-based assays for α2-ARs and β-ARs; (+) cyclazosin docking and MD simulations when bound to α1A-AR and α1B-AR; phenylephrine dose–response curves in Ca2+ mobilization assays using cells transfected with α1A-AR and α1B-AR, and site-directed mutated versions of each; pharmacological characterization of ligands at α1-ARs; structures, QAPB binding inhibition, and Ca2+ mobilization characteristics of Cpd1 derivatives; structures, [3H]-prazosin binding inhibition and Ca2+ mobilization characteristics of Cpd1 derivatives; and compound effects on non-receptor-expressing cells in Ca2+ mobilization assays (PDF)

AUTHOR INFORMATION

Corresponding Author
Daniel J. Scott — The Florey Institute, The University of Melbourne, Parkville, Victoria 3052, Australia; The Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia; orcid.org/0000-0001-6332-2793; Email: daniel.scott@florey.edu.au

Authors
Alaa Abdul-Ridha — The Florey Institute, The University of Melbourne, Parkville, Victoria 3052, Australia; orcid.org/0000-0002-1491-3818
Lazarus A. de Zhang — The Florey Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
Ashenafi Haileyesus Betrie — The Florey Institute, The University of Melbourne, Parkville, Victoria 3052, Australia; orcid.org/0000-0002-8196-8042
Mattia Delugi — Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
Tanseeem M. Vaid — The Florey Institute, The University of Melbourne, Parkville, Victoria 3052, Australia; The Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia; orcid.org/0000-0001-9825-9026
Alice Whitehead — The Florey Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
Yifan Zhang — The Florey Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
Ben Davis — Vernalis (R&D) Ltd, Granta Park, Cambridge CB21 6GB, U.K.
Richard Harris — Vernalis (R&D) Ltd, Granta Park, Cambridge CB21 6GB, U.K.
Heather Simmonite — Vernalis (R&D) Ltd, Granta Park, Cambridge CB21 6GB, U.K.
Roderick E. Hubbard — Vernalis (R&D) Ltd, Granta Park, Cambridge CB21 6GB, U.K.; Department of Chemistry, University of York, York YO10 5DD, U.K.
Paul R. Gooley — The Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia; orcid.org/0000-0002-0323-449X
Andreas Plückthun — Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland; orcid.org/0000-0003-4191-5306
Ross A.D. Bathgate — The Florey Institute, The University of Melbourne, Parkville, Victoria 3052, Australia; The Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia; orcid.org/0000-0001-6301-861X
David K. Chalmers — Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; orcid.org/0000-0003-2366-569X

Complete contact information is available at: https://pubs.acs.org/10.1021/acschemneuro.3c00767

Author Contributions
A.A., M.D., B.D., R.E.H., P.R.G., A.P., R.A.D.B., D.K.C., and D.J.S. conceptualized and designed the research. M.D. prepared receptor protein samples for fragment screening, which was performed by B.D., R.H., H.S. and R.E.H. T.M.V., P.R.G., and D.J.S. prepared independent receptor samples and performed competition STD-NMR experiments. A.A., A.W., Y.Z., and D.J.S. performed and analyzed all cell-based receptor assays and receptor mutagenesis. A.H.B. performed and
analyzed the data from, the ex vivo blood vessel contractile assays. L.A.Z. performed, and analyzed the data from, the docking and MD simulations, with input from D.K.C. and D.J.S. A.A., D.K.C., and D.J.S. chose compounds to order and synthesize based on the data. D.J.S. supervised the project. A.A., L.A.Z., and D.J.S. wrote the paper. All authors except A.W., Y.Z., B.D., R.H., and H.S. edited the paper.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
We thank Sharon Layfield and Tania Ferraro (The Florey Institute of Neuroscience and Mental Health) for assistance with cell culture and CRE response assays. We also thank Graham Mackay (Melbourne University, Department of Biochemistry and Pharmacology) for use of the Flexstation. This work was supported by NHMRC project grants 1081801 (D.J.S.) and 1081844 (R.A.D.B., P.R.G., D.J.S.); NHMRC ideas grant 2011978; an NHMRC-ARC Dementia Research Development Fellowship (1099692) to A.A.; and an NHMRC Boosting Dementia Research Leadership Fellowship to D.J.S.

ABBREVIATIONS
AC, adenylate cyclase; ANOVA, analysis of variance; AR, adrenoceptor; BRET, bioluminescence resonance energy transfer; cAMP, cyclic adenosine monophosphate; CHiESS, cellular high-throughput encapsulation solidification and screening; CNS, central nervous system; CRE, cAMP response element; DAG, diacylglycerol; DMEM, Dulbecco’s modified Eagles medium; DMSO, dimethyl sulfoxide; ECL, extracellular loop; GPCR, G protein-coupled receptor; MD, molecular dynamics; MFI, mean fluorescence intensity; NMR, nuclear magnetic resonance; PhE, phenylephrine; PLC, phospholipase C; QAPB, Quinazoline Piperazine BODIPY; RMSD, root mean-square deviation; SAR, structure—activity relationship; SBDD, structure-based drug design; SPR, surface plasmon resonance; STD, saturation transfer difference; TM, transmembrane domain; WT, wild type

REFERENCES
Structural Basis of the Diversity of Adrenergic Receptors. The structural insights into ligand recognition, activation, and signaling of the α_2 adrenergic receptor. Sci. Adv. 2020, 6 (9), eabj5347.

Angus, J. A.; Betrie, A. H.; Wright, C. E. Pannexin-1 channels do not regulate α_1-adrenoceptor-mediated vasoconstriction in resistance arteries. European journal of pharmacology. 2015, 750, 43−51.

Archer, M.; Dogra, N.; Dovey, Z.; Ganta, J.; Jang, H. S.; Khusid, J. A.; et al. Role of alpha- and beta-adrenergic signaling in...

(77) Ostrowska, K. Coumarin-piperazine derivatives as biologically active compounds. Saudi pharmaceutical journal: SPJ; the official publication of the Saudi Pharmaceutical Society. 2020, 28 (2), 220−232.

(84) Vaid, T. M.; Chalmers, D. K.; Scott, D. J.; Gooley, P. R. INPHARMA-Based Determination of Ligand Binding Modes at α1(1) Adrenergic Receptors Explains the Molecular Basis of Subtype Selectivity. Chemistry 2020, 26 (51), 11796−11805.

(91) Bowers, K. J.; Chow, E; Xu, H; Dror, R. O.; Eastwood, M. P.; Gregersen, B. A.et al.Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE conference on Supercomputing; Association for Computing Machinery: Tampa, FL; 2006. 84−es.