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Abstract: Current biomedical research and diagnostics
critically depend on detection agents for specific recogni-
tion and quantification of protein molecules. Monoclonal
antibodies have been used for this purpose over decades
and facilitated numerous biological and biomedical in-
vestigations. Recently, however, it has become apparent
thatmany commercial reagent antibodies lack specificity or
do not recognize their target at all. Thus, synthetic alter-
natives are needed whose complex designs are facilitated
by multidisciplinary approaches incorporating experi-
mental protein engineering with computational modeling.
Here, we review the status of such an engineering endeavor
based on themodular armadillo repeat protein scaffold and
discuss challenges in its implementation.

Keywords: affinity reagent; armadillo repeat proteins;
computational design; directed evolution; library genera-
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Introduction

Current biomedical research relies on the use of reagent
antibodies to detect biomolecules in medical diagnostics
and basic life science research. The development of a
chimeric antibody in 1984 (Morrison et al. 1984; Neuberger
et al. 1984) as a first recombinant antibody opened new
possibilities for the development of therapeutics and
applications as affinity reagents. Recombinant production
allows one to define the sequence, which is important as it
ensures the reproducibility of experiments and reliability of
results. In contrast, the sequence of monoclonal antibodies
is not directly known, but can be obtained via protein
sequencing, though it is time-consuming and costly. The
efficient production and sophisticated technology of
monoclonal antibodies that are derived by immunization is
certainly a reason for their prevalence as specific binders
in biological sciences. But the use of animal-derived anti-
bodies has been more and more brought into question. On
the one hand information about monoclonal antibodies,
which are derived from hybridoma cell lines, can get lost
due to cell line death or gene loss (Bradbury and Plückthun
2015). But apart from that, increasing awareness arose from
the observation that animal-derived antibodies are varying
between separate batches and often lack distinct specificity,
which affects experimental reproducibility (Baker 2015). To
address this issue, DNA sequencing can be applied and in
fact, a recombinant production should then be possible.
While this is technologically feasible, it is unfortunately
not routinely done for commercially available reagent
antibodies, which is likely due to commercial reasons
(Bradbury and Plückthun 2015).

Consequently, in an interdisciplinary meeting in 2019,
35 years after the first recombinant antibody had been
engineered, the development and use of animal-free re-
combinant antibodies were discussed with the objective to
foster their increaseduse inbasic research (Groff et al. 2020).
Still, conventional antibodies are widely used in research
applications, but antibodies with poor specificities or the
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lack of reproducibility led to the development of alternative
affinity reagents,which canbeproduced recombinantly and
hence ensure their reliability (Groff et al. 2015). Recombinant
production requires one to know the sequence of the re-
agent, and thus makes experimental results transparent
and reproducible. Furthermore, recombinantly produced
affinity reagents are truly monoclonal but can also be made
polyclonal by using exactly defined pools. This procedure
even provides knowledge about the full composition of the
reagent mixture.

The first recombinant affinity reagents have been
immunoglobulin derivatives. Immunoglobulins consist of
a tail region, the Fc fragment, which interacts with cellular
receptors, and a Fab fragment, which binds to antigens. In
1989 the first Fc-fusion protein was described, a fusion of
the Fc fragment with the cell-surface glycoprotein CD4
(Capon et al. 1989). In the meantime, Fc-fusion proteins
have been used as reagents for immunotherapy (to harvest
their long half-lives) and laboratory research (to exploit
detection reagents against the Fc part) (Duivelshof et al.
2021; Flanagan et al. 2007; Liu and Yu 2016), and the Fab
regions have been utilized as recombinant affinity reagents
(Conroy et al. 2017; Shih et al. 2012). However, the structure
of antibodies entails technical challenges such as pro-
duction in eukaryotic cells to obtain the required disulfide
pattern and/or glycosylation (Gebauer and Skerra 2020).
Such considerations have supported the development of
alternative binding reagents which are not based on the
immunoglobulin fold. First alternativeswere e.g., based on
natural folds such as fibronectin (Koide et al. 1998) or lip-
ocalin (Beste et al. 1999), leading tomonobodiesor anticalins
as designed affinity reagents. For both affinity reagents loop
regions can be randomized to generate different variants,
which can be selected for specific targets. However, a change
of the scaffold has just been the first step. The mentioned
affinity reagents are restricted by their size and variability in
their binding mode. For a better adjustability and for control
of the binding properties designed repeat proteins have been
considered as scaffolds. Designed ankyrin repeat proteins
(DARPins), for example, have the advantage to be fully
characterized, and their size can be adapted by addition of
further repeats (Binz et al. 2004; Forrer et al. 2003; Plückthun
2015). The repeats can also be easily randomized, which al-
lows for a great variability that can be screened (see below)
to find good binding reagents. Further, the binding site is
slightly concave, which is favorable for binding large epi-
topes. However, DARPins have to be devel-oped anew for
every target, nevertheless, they are used as innovative af-
finity reagents (Schilling et al. 2021).

A fundamentally different concept, which is also based
on a repeat protein scaffold, is currently investigated

within the collaborative ‘Predictive Reagent Antibody
Replacement Technology’ (for PRe-ART) project. Here, the
alternative affinity reagent is a designed armadillo repeat
protein (dArmRP, see Figure 1), which can be varied in
length of the concave binding surface, analogous to DAR-
Pins. However, the modularity of dArmRPs gives them an
additional unique feature, as each internal repeat harbors
binding capabilities for exactly two adjacent amino acid
residues of a target. Furthermore, the distance between
the repeats is optimized to match the periodicity of a
peptide chain, so that the dArmRP can be applied to bind
linear epitopes (Reichen et al. 2014). By designing
different repeat modules, with specificities for all indi-
vidual amino acids, a universal toolkit will be created
from which desired binders can easily be assembled. This
idea radically rethinks the established concept of affinity
reagents and will affect a broad user base, as the recog-
nition of linear epitopes is fundamental in many research
applications, for instance protein purification with affin-
ity tags or the recognition of unstructured regions such as
found on western blots or intrinsically disordered pro-
teins. Further, such unstructured regions are often targets
for post-translational modifications such as phosphory-
lation and play an important role in the function of pro-
teins (Dyson and Wright 2005; Liu et al. 2020).

This growing number of applications strengthens the
need for robust and well-defined affinity reagents, which
are less cost- and time-consuming in their production
compared to commonly used reagent antibodies. This is
especially important since many commercial reagent an-
tibodies lack specificity or do not recognize their target at
all. Themodular dArmRPs define an innovative technology
that fully reexamines the concept of existing affinity
reagents and promises to revolutionize their applications.

Armadillo repeat proteins are
modular scaffolds for peptide
recognition

The natural armadillo repeat protein (ArmRP) scaffold
harbors unique and useful features necessary for its devel-
opment into recombinant affinity reagents. It is comprised
of homologous structural units that stack to form an elon-
gated, rigid structure. Crystal structures show that natural
ArmRPs bind stretched peptides of up to six amino acids
(Conti and Kuriyan 2000; Conti et al. 1998; Graham et al.
2000). This binding of peptides in extended conformation
reveals a conservedmodular recognitionmechanismwhich
is a key feature of the ArmRP scaffold. Every second main
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chain peptide bond of the target is held in place by a
conserved asparagine residue on every ArmRP repeat.
These interactions provide a general affinity and secure the
regularity of the binding interactions. Each ArmRP repeat
unit further binds two adjacent amino acid side chains in
the target sequence in a specific manner (Figure 1).

These features were enhanced and regularized in iter-
ative rounds of engineering. Using a consensus approach
followed by computational and structural engineering for
stability yielded a highly stable dArmRP, which consists of
perfectly stackable repeats and optimized cap structures
(Alfarano et al. 2012; Madhurantakam et al. 2012; Parmeg-
giani et al. 2008). Each repeat is 42 amino acids long and
forms three alpha-helices. The assembled repeats again
form an extended superhelical structure. Reichen et al.
(2016) analyzed thevariation in curvature ofnatural ArmRPs
and identified a repeat pair in yeast importin-alpha with the
ideal curvature geometry for optimal bindingof an extended
peptide. Based on binding pockets from importin-alpha, a
dArmRP could be built that has picomolar affinity to its
target peptide of alternating lysine and arginine residues

(Hansen et al. 2016). The crystal structure of this protein,
built from five identical repeats and N- and C-terminal caps
in complex with a (KR)5 peptide, confirmed the regular
binding mode (Figure 1B). It lays the groundwork for the
design of tailored binders with specific affinities by the as-
sembly of dipeptide-specific dArmRP modules.

For the development of a diverse set of binding mod-
ules for different amino acids, a consistent design and
testing approach is crucial for success as we discuss below.
Furthermore, it is important that other binding modes are
eliminated as it had been observed that repetitive se-
quences lead to register shifts and flipping of peptides
during selections from libraries, which affects the investi-
gation of binding specificities (Ernst et al. 2020). To prevent
the peptide from binding in undesired orientations, a lock
was incorporated into the dArmRP by grafting a hydro-
phobic binding site observed in beta-catenin onto the
dArmRP, thereby locking the peptide with the comple-
mentary sequence in place. The interaction of the lock was
improved by mutual optimization of the pocket and the
bound peptide, which were then confirmed by X-ray

Figure 1: The modular nature of designed
armadillo repeat proteins (dArmRPs).
(A) Dipeptide units of a linear peptide
stretch are bound in a modular fashion by
dArmRPs. (B) The crystal structure of a
dArmRP in complex with its target (PDB-ID:
5AEI) shows themodularity of binding of the
extended peptide (magenta, as sticks) to
the repeat modules of the protein (green, as
cartoon). The residues of one arginine
binding pocket are highlighted (orange, as
sticks).
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crystallography. The lock could further be moved from the
N-terminus of the dArmRP to its middle nicely highlighting
the modularity of the system (Ernst et al. 2020).

With stability and modular binding of dArmRPs
established and with an efficient locking system in place,
the main goal is now to developmodules that can bind any
other amino acid including negatively charged or even
phosphorylated ones. Clearly, further adjustments of the
dArmRP scaffold will also be necessary as neighboring
binding pockets and combination of modules might have
effects on the overall binder. However, the current chal-
lenge is to identify sequences that form binding pockets for
other amino acids and thereby design new binding mod-
ules. Here, a consistent strategy to reduce the number of
theoretical binding pocket sequences to an experimentally
testable level is the key to success.

Experimental strategies in the
design of specific dArmRP modules

The repeat units of dArmRPs bind two adjacent amino acids
in an alternating orientation (Figure 1). Originating from the
importin-alpha framework one binding pocket is specific for
arginineand theother one is specific for lysine (Hansenet al.
2016). The specificity of each pocket has to be adjusted to
recognize other amino acids by mutating binding pocket
residues. For an efficient search of specific binding pockets,
DNA library selection technologies play a major role. These
techniques allow to rapidly screen large numbers of DNA
sequences encoding for the target protein that are ran-
domized in regions responsible for the desired interaction.
A complete randomization of a dArmRP module, however,
is not useful. First, only a small fraction of residues is in
direct contactwith the ligand side chain of the target peptide.
Second, uncontrolled randomization will incorporate un-
wanted termination codons. And third, due to the assign-
ment of 64 codons to 20 canonical amino acids and
termination codons, the distribution of amino acids will
heavily differ at each position of randomization. Hence, the
probability for certainaminoacids to occurwill bedrastically
reduced and create a bias. Additionally, the total number of
sequences necessary to exhaustively screen a library will
exponentially increase per randomized amino acid position.

A solution to these difficulties and to reduce the num-
ber of DNA sequences necessary for exhaustive screening is
the use of MAX randomization as a non-degenerate satu-
ration mutagenesis technology (Hughes et al. 2003). This
technology allows one to build libraries with exactly 20
codons (one for each amino acid) or a desired subset of
those for the randomized position. As a related technique

ProxiMAX even allows to saturate multiple contiguous co-
dons in a non-degenerate manner (Ashraf et al. 2013). Both
methods require no specialized chemistry, reagents, or
equipment. Ultimately, the use of the MAX techniques al-
lows to generate DNA libraries without amino acid bias,
termination codons, and degeneracy. Limiting both library
size and degeneracy is critical to maximizing the output
from the applied screening technology.

Three main selection technologies exist that could be
used for the selection of dArmRP libraries: phage display,
ribosome display, and yeast display. Because of the starting
consensus scaffold being dominated by importin-alpha,
the libraries are heavily biased to bind positively charged
peptides, which creates difficulties during panning. As
ribosome display uses highly negatively charged mRNA
molecules and filamentous phages are equally negatively
charged, it is not possible to select specific binding to the
positively charged peptides. In contrast, selections by yeast
display can be successfully performed, as the yeast surface
is apparently not as negatively charged.

During selections of pockets for individual amino acids
it is key that the peptides bind specifically and efficiently to
the dArmRPs. Due to the repetitive nature of the dArmRP
binding pockets the target peptide can bind in different
registers. To avoid flipping or sliding of the peptide it is
important to provide a binding pocket that locks the pep-
tide into place. This was achieved by grafting a binding site
from β-catenin into the dArmRP as described above (Ernst
et al. 2020). The lock allows that selections can now be
focused onto the binding pocket residues to the new target
side chain to which specificity should be achieved.

Selection by yeast display is a very powerful tech-
nique and many different variants can be sorted in a high-
throughputmanner. Nonetheless, evenwith this technique
only a library of a certain size can be screened. While li-
brary design byMAX randomization is a huge advantage as
it allows particular residue types in predefined positions,
screening of these libraries is still time-consuming.
Therefore, it is useful to focus the libraries further to the
most likely variants. Here, computational techniques can
help to predict precise mixtures of amino acids for each
position of randomization.

Computational strategies in the
design of specific dArmRP modules

The modularity of the dArmRP scaffold allows for the in-
dividual design of a single pocket at a time. However, there
is still an enormous number of residue combinations and
degrees of freedom that need to be sampled. Therefore, a
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computational pre-selection of possible binding modes is
useful and necessary to enable efficient experimental
screening as described above.

The computational sampling of a very large number
of combinations and degrees of freedom is challenging
as well, though the past decade has seen significant im-
provements in the development and application of compu-
tational methods for protein design (Lechner et al. 2018).
With algorithmic improvements and technological progress
in computer hardware, new protein design approaches
yielded increased accuracy and efficiency by allowingmore
flexibility and by applying simultaneous sampling of mul-
tiple sequences (Friedland et al. 2008; Murphy et al. 2012;
Saunders and Baker 2005; Yin et al. 2007). In addition to the
applied flexibility, different design objectives like creating
single-state, multi-state, or ensemble-based designs influ-
ence the quality of the computational predictions.

One powerful method for sampling flexibility in
computational protein design is Molecular Dynamics (MD)
that has proven to provide valuable insights on protein
stability, dynamics, and macromolecular interactions
(Simonson et al. 2020). Technological advances such as
parallelization on graphics processing units (GPU) have
significantly accelerated MD calculations. Although the
high computational cost is still a limiting factor, MD sim-
ulations of microseconds on a single GPU for protein sys-
tems such as dArmRPs are achievable within several days
(Lazim et al. 2020). However, the design of binding pockets
requires to sample many different combinations of amino
acids, which spans an enormous combinatorial search
space. For the evaluation of such a large amount of
different variants, provable algorithms, including Branch
and Bound, Dead-End Elimination, and Dynamic Pro-
gramming, that have been successfully applied to protein
design problems with backbone flexibility are promising
developments for efficient calculations (Desmet et al. 1992;
Gordon and Mayo 1999; Jou et al. 2016; Leaver-Fay et al.
2005; Ojewole et al. 2018). Also, deep learning techniques
have experienced a large gain in interest in protein rede-
sign since novel deep learning architectures achieve
extraordinary prediction results in various fields due to
clever model design and effective pattern recognition
(Jumper et al. 2021; Krizhevsky et al. 2017). Thus, predic-
tion of protein design features might be applicable on
multiple sequences in a drastically smaller timescale.
However, many state-of-the-art machine learning models,
especially deep learning models, have not been exten-
sively explored for protein design applications so far
(Gao et al. 2020; Wang et al. 2018; Xu et al. 2020).

Nonetheless, computational strategies are often used
as a complementary approach to experimental methods

since experimental work is time-consuming and expensive
(Chen and Keating 2012; Ernst et al. 2020; Liang et al. 2021).
Within the multidisciplinary approach of PRe-ART,
computational tools with diverse features help to charac-
terize existing and to design new binding modules. For the
characterization of new or existing binding pockets,
different computational options are available. Tools can be
used to screen the possible sequence space with methods
such as the non-exhaustive screening and scoring pro-
tocols FastDesign (Loshbaugh and Kortemme 2020;
Maguire et al. 2021) and coupled moves (Ollikainen et al.
2015) included in the software suite Rosetta. FastDesign
performs iterations of side chain repacking and global
minimization to find energy minima while exchanging
predefined residues within the sequence. Coupled moves,
however, alters backbone and sidechain conformations as
well as the sequence at a time, to allow for more effective
sampling. Further, several well-established computational
methods, including flex ddG andBranch andBoundOver K*
(BBK*) algorithms implemented in the Rosetta and Osprey
protein design suites, respectively, allow to specifically
target single binder sequences with exchanges in one res-
idue position (Barlow et al. 2018; Ojewole et al. 2018). The
flex ddG protocol incorporates backrub motion to accu-
rately calculate binding affinity changes upon mutation.
The BBK* algorithm efficiently evaluates the partition
function to calculate the binding affinity, while addition-
ally allowing for continuous flexibility. Complementing
these algorithms, MD simulations can support the analysis
of the influence of mutations on the dynamics and the
protein-ligand interactions of the system.

To predict promisingmutations in a binding pocket in
the first place that potentially develops a specific binding
ability for the desired peptide, the software suite
ATLIGATOR has been developed (Kynast et al. 2022). It is
based on a knowledge-based approach that extracts
pairwise interactions from existing structures to be used
in the design of new binding pockets. Furthermore, it
incorporates the detection of frequent interaction groups
for specific amino acid side chains. Subsequent evalua-
tion of the suggested binding pockets from ATLIGATOR
can be performed by algorithms such as flex ddG or BBK*,
which can be complemented with MD simulations.
The combination of the described methods results in a
detailed understanding of the new binding pocket can-
didates. Hence, even if the computational prediction of
exact binder sequences is not entirely possible, the
multidisciplinary PRe-ART approach established a feed-
back loop to use the findings from computational
modeling for the design of focused libraries for experi-
mental screening (Figure 2).
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Complementarity of experimental
and computational design

The design of specific protein-protein or protein-peptide
interactions with experimental screening and selection
methods as well as computational modeling and predic-
tion tools has progressed significantly. Experimental
screening of DNA libraries with molecular display tech-
nologies (Levin and Weiss 2006) allows one to sample
millions of sequences at once. When combining fluores-
cence activated cell sorting (FACS) with bacterial or yeast
display approaches, cells can be sorted according to
desired features. However, experimental screening
methods suffer from exponentially growing complexity,
the more residue positions are randomized. The use of
techniques such as MAX randomization optimizes the
codon selection to the minimum required and allows to
define limited sets of amino acids for randomized positions
(Hughes et al. 2003). Thus, the total number of sequences
to screen for a complete coverage of desired amino acid
sequences is minimized and the effective screening ca-
pacity is drastically increased.

Still, a theoretical library for complete randomization
of a binding pocket quickly exceeds screening capacities.
Thus, sequence space has to be reduced to a relevant set of

sequences in the randomization. To screenonly the relevant
sequence space computational modeling can be used to
exclude noninvolved positions and unfavorablemutations.
An early attempt was by Voigt et al. (2001) who computa-
tionally focused a library and successfully selected proteins
with increased stability. Also, in protein-protein interaction
engineering, several groups have used computational
design to focus libraries to select sequences compatible
with the target fold that were screened for function later-on
(Guntas et al. 2010; Hayes et al. 2002; Treynor et al. 2007).
With increasing computational power and new protein
modeling and design algorithms in the fields of determin-
istic (reviewed in Gainza et al. [2016]) or heuristic solving
(reviewed for theRosetta Suite inKuhlman [2019]) aswell as
machine learning (reviewed in AlQuraishi [2021]) the po-
tential to computationally focus libraries increased heavily.

The prediction of protein structures and stability are
used successfully as a less cost- and labor-intense alter-
native to experimental methods. Even though the predic-
tion of protein complex structures and their binding free
energy is still not feasible for “bigger systems” in many
cases, current software protocols can give crucial insights
into those events (Barlow et al. 2018; Ojewole et al. 2018).
Thus, functionally important positions can be identified or
amino acid properties with potentially positive effects can
be defined to reduce the size of the relevant search space.
An incorporation of this knowledge into a designed library
for experimental screening allows one to screen a bigger
part of potentially advantageous sequences and to sort out
disfavored sequences with a higher probability. Hence, the
interplay of computational and experimental techniques
leads to a higher likelihood to find variants with an
improvement of the desired functionality. In the case of the
PRe-ART project individual binding pockets are designed
in dArmRPs, which detect and discriminate single amino
acid side chains with high specificity. Randomization of all
possible interacting positions would lead to a search space
that largely exceeds screening capacities, which is why
complementation with computational methods to design
focused libraries is highly beneficial.

The precise objective of such a library design process
for subsequent experimental screening is not immediately
obvious. Possible priorities in creating such a library can
be the inclusion of the best predicted sequences, the most
frequently predicted sequences or a preferably high
sequence diversity (Chen and Keating 2012), as well as
sequences with highest affinity versus specificity. A
reasonable choice would be to focus on affinity with
computational selection and on specificity with subse-
quent experimental screening. Additionally, a library can
be designed by scanning and scoring relevant shares of

Figure 2: Workflow in the engineering of binding modules.
Libraries are designed, synthesized, screened, and evaluated,
providing feedback to the input techniques. The overall loop creates
an ensemble of binding modules that can later be assembled to
recognize predefined target peptides.
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the sequence space (Barlow et al. 2018; Gainza et al. 2013)
or by considering interaction motifs found in natural
proteins (Kynast et al. 2022). The results of screening such
a focused library will potentially detect more desired
binder sequences.

These variants of the binder sequences can be further
characterized for their binding specificity as well as the
structure of the protein-peptide complex. Such specific
binding affinity information is crucial for the establish-
ment and improvement of computational prediction tools
(as seen in Barlow et al. [2018], Kadukova et al. [2021], and
Spiliotopoulos et al. [2016]) to enable effective evaluation
of methodological parameters. Furthermore, computa-
tional approaches can complement or explain experi-
mental findings by simulations of the dynamic behavior of
the dArmRP-peptide complex. Additionally, the selection
rounds during experimental screening can be sequenced
with next-generation sequencing techniques. By that
strategy, a gigantic amount of sequencing data is gener-
ated whose analysis can lead to an even more sophisti-
cated design of focused libraries or selection methods.

Conclusions

Most affinity reagents for scientific research applications
are still monoclonal antibodies derived from immuniza-
tion, which either already exist and thus can be ordered
from a supplier (catalog antibody), or they do not exist
and have to be produced by immunization of animals
(custom antibody). In fact, for most targets, epitopes and
applications no suitable catalog antibody exists. And
even if they exist, catalog antibodies frequently do not
perform for reasons of cross-reactivity or low affinity, and
the production of custom antibodies is costly in terms of
time and money.

A major issue for common catalog or custom anti-
bodies is that their genetic information is not available
unless the antibody is sequenced in a labor-intensive step.
However, applications with fusion proteins or the expres-
sion on cell or virus surfaces require the knowledge of the
protein sequence to produce the binder recombinantly.
Therefore, many catalog or custom antibodies are not
suitable for such applications (Bradbury and Plückthun
2015). Additionally, common recombinant antibodies also
have to be created anew for every new target sequence.

The collaborative PRe-ART project addresses these is-
sues. A modular affinity reagent has been built based on
the Armadillo repeat scaffold, where the modularity of the
binder matches the target peptide architecture. Now, in-
dividual binding pockets are being designed to be specific

for individual amino acids on the target that can later be
combined. Thus, with an existing set of binding pockets in
place it will be possible to assemble an affinity reagent for a
specific target sequence in a very short time. Apart from
slight adaptations at the pocket interfaces no further
experimental selections and computational optimizations
will be necessary during the assembly of new sequence-
specific binding proteins.

This fundamentally new concept allows one to bind
linear target sequences in an unfolded state. Such
stretches are often available at the termini of proteins or in
linker regions, or they can be obtained by denaturation of
the target protein as in SDS-PAGE or western blots. Un-
structured targets of great interest are also the tails of
receptors or regions of signal transduction molecules
which are phosphorylated, or intrinsically disordered.
Since unstructured regions are often post-translationally
modified, thesemodular affinity reagents could be used to
specifically target and investigate post-translational
modifications. It would also be highly interesting to
build pairs of binders for phosphorylated and unphos-
phorylated targets to visualize effects of candidate drugs
on signaling pathways. Such an approach could accel-
erate mass spectrometry detection by orders of magni-
tude, circumvent labeling and thus permit to incorporate
such a workflow into drug discovery. Because of the
modular nature, “calibration” binders could be added that
detect constant parts of the proteins in question, which
would further add to the robustness of the concept.

Overall, the application of modular affinity reagents
that can be assembled from predefined binding pockets
has enormous potential for a wide range of applications.
Because of the sequence-specific binding nature, these
applications are completely out of reach of monoclonal
antibodies or other conventional affinity reagent scaffolds.
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