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Designed ankyrin repeat proteins (DARPins) are artificial binding

proteins that have found many uses in therapy, diagnostics and

biochemical research. They substantially extend the scope of

antibody-derived binders. Their high affinity and specificity,

rigidity, extended paratope, and facile bacterial production make

them attractive for structural biology. Complexes with simple

DARPins have been crystallized for a long time, but particularly

the rigid helix fusion strategy has opened new opportunities.

Rigid DARPin fusions expand crystallization space, enable

recruitment of targets in a host lattice and reduce the size limit for

cryo-EM. Besides applications in structural biology, rigid DARPin

fusions also serve as molecular probes in cells to investigate

spatial restraints in targets.
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Introduction
For the understanding of almost any molecular process in

life science the knowledge of the three-dimensional

structure of biological macromolecules is indispensable.

Diffraction methods, particularly X-ray crystallography

and electron microscopy, are the prevailing techniques

to obtain high resolution structural information. Both

methods possess strengths and weaknesses. X-ray crys-

tallography requires well-ordered crystals to amplify the

diffracted waves, while electron microscopy requires a

minimal particle size to identify molecular particles in

electron micrographs. Both methods are largely comple-

mentary, because large macromolecules are typically

more difficult to crystallize and small macromolecules

are difficult to spot on images, favoring electron micros-

copy and X-ray crystallography for large and small macro-

molecules, respectively (reviewed in Ref. [1]).
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One strategy to overcome both limitations would be to

bind or fuse specific chaperone proteins to the target

molecule. In X-ray crystallography, the thereby extended

molecular surface offers additional opportunities to form

crystal contacts, which improves the likelihood for obtain-

ing crystals. Early crystallization chaperones that bind the

target by non-covalent interactions were derived from

natural binding proteins, such as antibody Fab fragments

(reviewed in Refs. [2–4]). Initially, these were derived by

immunizing lab animals, but in vitro selection methods

from synthetic libraries have also been used in recent

years. The antibody fragments from advanced synthetic

libraries typically express much better as recombinant

proteins than those from natural sources [5,6] — an

important factor considering the protein amounts

required for typical structural biology projects.

After the establishment of selection technologies from

synthetic antibody libraries, the antibody molecule itself

became dispensable. Thus, binders from alternative scaf-

folds, such as camelid antibody VHH domains

(‘nanobodies’) [7,8], fibronectin type III domains

(‘monobodies’) [9], lipocalins (‘anticalins’) [10], SH3

domains (‘fynomers’) [11], Staphylococcus aureus IgG-bind-

ing protein A domain Z (‘affibodies’) [12], and designed

ankyrin repeat proteins (DARPins) were also used, the

latter being the focus of this review [13,14].

What are DARPins?
Natural ankyrin repeat proteins interact with their targets on

the concave surface, typically using a subset out of four to six

individual ankyrin repeats. Considering this principle,

highly stable consensus repeats were designed with self-

complementary molecular surfaces that can be stacked in

any combination, and are randomized in the potential inter-

action residues [15,16]. Each repeat folds into two antiparal-

lel a-helices followed by a short b-turn (Figure 1). The

stacked repeats form a superhelical solenoid protein, where

the extended hydrophobic core is shielded by specific cap-

ping repeats on either side that provide a hydrophilic surface

[17,18]. DARPins possess several beneficial traits to serve as

crystallization chaperones and EM scaffolds: They can be

robustly selected in vitro against virtually any folded protein

target [14], and DARPins have also been made against

particular DNA structures [19], peptides [20�] and small

molecules [21]. DARPins are extremely stable against heat

and chemical denaturants [22,23], they do not contain cys-

teine residues and they can be expressed at very high yield

from bacterial expression cultures (reviewed in Ref. [14]).

Each internal ankyrin repeat comprises 33 residues, of

which 27 framework residues are kept constant to ensure
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Figure 1
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Concept of rigid DARPin fusions with DARPin-DARPin fusions as an example.

Two DARPins (blue and light blue) can be connected rigidly by overlapping or fusing the terminal helices to a rigid, designed a-helical linker of

variable length. This changes the relative orientation of the two DARPins with respect to each other. Examples shown are rigid fusions 5LE8 (left)

and 5LEL (right) with a 15 or 10 amino acid long shared helix, respectively.
structural integrity and six residues that are potentially

forming part of the paratope can be randomized. Two or

three stacked internal repeats typically form the intearc-

tion surface to recognize a variety of target proteins [13].

Binders against almost any target can be selected from

synthetic DARPin libraries by ribosome display in a high-

throughput manner, selecting against 96 targets in paral-

lel, typically resulting in a series of picomolar or low

nanomolar binders, all with different sequences [24].

Ribosome display allows the panning of libraries with

up to 1012 molecules, but other methods, such as phage

display [25], yeast surface display [21], and SNAP display

[26] have also been applied successfully.

DARPins and their applications in general have been

previously reviewed [14,27], and specialized reviews of

their applications in developmental biology [28], gene

delivery [29], and as protein therapeutics [14,27] have been

published. Several DARPins are in clinical development

[30]. Here, we focus on the application of DARPins as

structural chaperones, particularly in electron microscopy

and X-ray crystallography. For NMR, working with DAR-

Pins is less straightforward, because the repetitive archi-

tecture makes the assignment of overlapping resonances

difficult, but NMR has given unprecedented insight into

thestructural determinants of the extreme protein stability,

and was thus instrumental in the further engineering of the

DARPin platform [17,23,31].

The early application of unmodified DARPins to help in the

structure elucidation by X-ray crystallography has been

previously reviewed [32], but subsequent engineering has

increasedthe options considerably, and this will be one focus
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of this review(Figure2).DARPin-targetcomplexeshavenot

only been made to enhance crystallization,  or to stabilize a

particular structural state for structural studies, but also to

structurally understand biological effects. Since it is impos-

sible to separate the impact of DARPins on crystallization

from the biological effect, we review many of recent crystal

structures of DARPins, regardless of whether the DARPin

was used to enhance crystallization or to study the biological

effect (or both). To identify these complexes, we searched

the PDB database with the sequence of the full-consensus

DARPinN3C[22]and lookedatall entries fromthepast four

years. It should be noted that an earlier summary of DARPin

complexes has been published [33], and a few older oneswill

be mentioned for context.

Crystal structures of single DARPin
complexes
Tubulin is a nice example of how DARPins enable the

structural analysis of oligomerization-prone proteins

(Figure 2a). The assembly of tubulin monomers into

filaments is a process that competes with crystallization.

DARPin D1, as well several other DARPins, prevents

oligomerization [34]. Using the D1 co-crystallization

strategy, several structures of ternary tubulin complexes

have been determined that could explain the molecular

details of nucleation, growth and disassembly of micro-

tubules, even allowing data collection at room tempera-

ture by serial crystallography [35–40,41�].

The RAS protein is crucial for signal transduction and an

attractive target to combat roughly 30% of all human

cancers. Crystal structures of KRASG12V in complex with

DARPins K27/K55 and K13/K19 have been determined
www.sciencedirect.com
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Figure 2
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DARPins as structural chaperones.

DARPins are in blue, rigid fusion partners in light blue (other DARPins) or white (non-DARPin fusions), bound targets in green (GFP) or light green/

pale green (non-GFP targets) (a) DARPin binding tubulin (PDB-ID:4LNU). (b) Back-to-back DARPin dimer binding erythropoietin receptor (EpoR)

(PDB-ID:6MOH). (c) DARPin-DARPin rigid fusion serving as a sterically sensitive structural probe for binding to the receptor Her2. (d) DARPin-

DARPin rigid fusion binding MBP and GFP (PDB-ID:6LEM). (e) DARPin-b-lactamase fusion binding MBP (PDB-ID:5AQ9). (f) Aldolase-DARPin

fusion as an EM-scaffold binding GFP (PDB-ID:6MWQ). (g) DARPin-cage fusion as an EM-scaffold binding GFP (PDB-ID: 6NHV and 6NHT). (h)

EngBF-DARPin fusion as a crystal lattice host, binding GFP as the guest (PDB-ID 6SHA).
at high resolution. While the DARPins K27/K55 bind RAS

in its inactive, GDP-bound or active, GTP-bound confor-

mation, respectively, the DARPins K13 and K19 exclu-

sively recognize the isoform KRAS, independently of the

nucleotide bound. The specificity for just one isoform is

mediated by the interaction with the allosteric lobe of

KRAS, which exhibits most of the isoform-differentiating
www.sciencedirect.com 
point mutations within the RAS G-domain. Interestingly,

these different DARPins are thought to execute their

cytotoxic effects by discrete modes of action, including

the inhibition of GEF-mediated nucleotide exchange,

downstream effector recruitment and RAS nanoclustering

[42,43�]. Taking into account the amount of surface that is

covered when the small RAS protein is bound by one of the
Current Opinion in Structural Biology 2020, 60:93–100
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DARPins, it remains questionable whether there is really a

single, discrete mode of action. Furthermore, another

DARPin has been developed, which recognizes all RAS

isoforms with similar affinity and shows only a slight pref-

erence for the active conformation (Kapp et al., manuscript

in preparation). In this case, the authors propose a combi-

nation of multiple modes of action.

One of the strategies to block signaling by a soluble

protein is to generate a high-affinity binding protein that

targets the same surface that interacts with the cognate

receptor. This is typically the surface most prone for

protein-protein interactions, by being more rigid and

somewhat more hydrophobic. DARPins binding to inter-

leukins (IL) 4 and 13 were generated that could impair IL

signaling. The IL-13Ra1/IL-4Ra receptor pair binds IL-

4 as well as IL-13. The crystal structures of IL-4:DAR-

Pin_44 and IL-13:DAPRin_6G9 complexes revealed that

the DARPins recognize distinct epitopes: DARPin_44

binds IL-4 with picomolar affinity and mimics the inter-

actions of the IL-4Ra receptor [44], whereas DARPin

6G9 prevents binding of IL-13Ra1, the second half of the

receptor pair, to IL-13 [45]. Induced-fit movements were

observed in both complexes, although all molecules were

initially considered structurally stable.

DARPins have also been used to modulate the activity of

enzymes, such as recently Cathepsin B [46], and in earlier

work, various kinases [47–50] and other proteases [51,52].

Because DARPins can be expressed in the cytosol and

fold there, they have become valuable reagents to study

and influence enzymatic reactions in living cells.

Recently, a standardized procedure was developed to

model DARPin:target complexes that can be used to

predict the structures of unknown complexes, requiring

only the sequence of a DARPin and a structure of the

unbound target [53�]. For a set of diverse DARPin:target

complexes tested, it generated a single model of the

complex that well approximates the native state of the

complex, as found in the crystal structure of the complexes.

DARPins targeting membrane receptors
Besides soluble proteins and polymerizing structural pro-

teins, also membrane proteins have been targeted by

DARPins to enhance crystallization. One target particu-

larly well studied is the bacterial multidrug efflux pump

AcrB (reviewed in Ref. [32]). Overexpression of this

efflux pump is often observed in multi-drug resistance,

making the AcrABZ-TolC complex an attractive target

for the development of novel antibiotics. DARPins in

complex with full-length AcrB and an AcrB fragment

comprising the periplasmic domain have been used to

crystallize the efflux pump in complex with fusidic acid

and pyranopyridine-based inhibitors, respectively

[54,55]. The combined study of AcrABZ-TolC by cryo-

EM at 5.9 Å and AcrBZ:puromycin:DARPin by X-ray
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crystallography at 3.2 Å resolution gave rise to a better

understanding of the deviation of AcrB from the three-

fold symmetry upon ligand binding and cargo transport.

DARPins bind AcrB with a 2:3 stoichiometry, exploiting

the asymmetry of the transporting AcrB trimer, which is

also seen by cryo-EM in the absence of DARPins [56].

Membrane-anchored receptors have been targeted in

different ways: Steric interference of monomeric DAR-

Pins with dimerizing receptors can inhibit signaling, as

shown, for example, for the vascular endothelial growth

factor [57]. In contrast, in the case of hepatocyte growth

factor receptor (c-MET), different bi-paratopic DARPins

crosslink the receptors in an inactive state, thereby inhi-

biting MET kinase activity and downstream signaling

[58]. The latter application follows a strategy previously

developed for HER2 [59–61] that is now being translated

to the clinic in a similar form.

In the case of the Frizzled family of Wnt receptors the

combination of in silico design followed by experimental

selection with yeast display was instrumental for deriving

subtype-specific DARPin binders [62��]. In a very elegant

study, several DARPin complex structures were used to

guide the topological tuning of the erythropoietin receptor

(EpoR). The anti-EpoR DARPin E2 was dimerized and E2

dimers were subsequently used to impose different angles

and distances between EpoR extracellular domains. Crystal

structures of EpoR:E2 dimer complexes allowed a correla-

tion of the spatial orientation of EpoR domains with receptor

activity in human erythroid cells [63��] (Figure 2b).

DARPin fusions expand the structural
repertoire
DARPins have a unique architecture that makes the creation

of versatile rigid fusion proteins possible. The N-termini and

C-termini of DARPins form a-helices, permitting rigid

fusions of DARPins to any other helical scaffold by extend-

ing (and/or ovelapping) these helices (the ‘shared helix

approach’) (Figure 1). The ‘shared helix approach’ was

initially developed for the design of self-assembling protein

oligomers [64]. This design strategy was later improved to

engineer the helix to contact both domains simultaneously

andthus tominimizeany bendingmotion,and itwasusedfor

the design of monomeric binding proteins extended by a

well-crystallizing domain in different orientations [65]. In

DARPins, theterminiare lateral to thebindingsite (oneither

side), permitting a variety of architectures that are fully

compatible with target binding. Rigidity is one key advan-

tage of this concept, of essence in structural biology, but it

can also be exploited in functional studies. In addition, the

‘shared helix approach’ allows to control the directionality of

the fused scaffolds, for example, the orientation of epitopes

relative to each other. When designed properly, the helix at

least partially contacts, at the same time, both protein

domains to be joined, a feature essential for rigidity, and

this requires the helix sequence to be adjusted to allow this.
www.sciencedirect.com
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A long ‘flagpole’ helix, where the two helices are simply

consecutively joined, leads to a non-rigid fusion. These

considerations are explained in the first paper describing

this strategy [65].

Crystallization chaperones were the first DARPin-based

fusion proteins where this concept was applied, as the

versatility of the concept allows not only to fuse the binding

DARPin to different well-crystallizing fusion proteins, but

each one of them also in many orientations, thereby creating

a very large number of new crystallization interfaces. This

has greatly extendedthe utility of DARPinsas crystallization

chaperones. Furthermore, the same strategy has been highly

useful in developing rigidly fused DARPins as functional

tools in other applications (see below).

The first example for such a rigid fusion was the extension

of the molecular surface of the DARPin named ‘off 7’,

which binds to maltose binding protein (MBP), by fusing

its C-terminus to the N-terminal alpha-helix of TEM-1

b-lactamase as a robust, well folding and well crystallizing

monomeric protein [65] (Figure 2e). Six different con-

structs with different linking geometries were generated

by inserting additional residues in the shared helix, which

has to be adjusted in sequence, as it now contacts both

proteins with part of its surface. Some of them were

crystallized in complex with maltose-binding protein,

the target of the DARPin [65], and the designed struc-

tures were largely confirmed. Subequently, a similar

strategy was applied to fuse the C-terminus of DARPin

off7 to the N-terminus of protein A [66,67].

For use as a crystallization chaperone, it was particularly

advantageous to fuse the DARPin D12 to the target-binding

DARPin, as D12 was found to have unusual properties [68�].
The DARPin D12 paratope frequently makes versatile

crystal contacts. The interactions of DARPin D12 are weak

enough for constructs containing this DARPin to remain

monomeric during expression and purification. Upon crys-

tallization, the paratope-paratope interactions  of this DAR-

Pin are strong enough to form prominent crystal contacts

under a wide variety of conditions and in different geome-

tries. This strategy was used to determine the structures of

designed repeat proteins recalcitrant to yielding well dif-

fracting crystals, such as in the case of BRIC2 and an

Armadillo repeat protein [69,70], by exploiting the possibil-

ity of creating different fusion geometries. Several more

examples are currently being prepared for publication,

including G protein-coupled receptors (Deluigi et al., in

preparation). DARPin D12 may thus be added to the port-

folio of well crystallizing proteins such as, for example, T4

lysozyme, apo-cytochrome B(562)RIL and several others,

yet with the additional advantage of being able to be fused to

other proteins in a rigid manner and thus be part of binding

complexes. The ability to adjust the directionality of DAR-

Pin epitopes adds another dimension in crystallization

screens.
www.sciencedirect.com 
Furthermore, the rigid fusion approach can be utilized to

build crystallization scaffolds that serve defined purposes,

like shielding a binding surface from influencing crystal

contacts. This strategy was applied to determine the struc-

ture of designed Armadillo repeat proteins, to keep their

peptide-binding site undisturbed by crystal contacts [70].

Since the rigid-fusion approach with a shared helix is a facile

and versatile way to connect two proteins in a defined way,

DARPins were also used to determine the structures of other

biomolecules in a novel host:guest approach. For this pur-

pose, the DARPin was inserted in an existing crystal lattice.

Normally, crystallization  chaperones do not eliminate the

need to search for crystallization conditions — they merely

increasethechanceoffindingsuitableones.Tosolvethis last

problem, a DARPin fusion protein was developed that

crystallizes under predictable conditions. The bacterial pro-

tein EngBF builds a porous but well diffracting crystal

lattice. The EngBF lattice permits rigid fusions to a specific

DARPin and the so created EngBF-DARPin host lattice

allows site-specific recruitment of a guest molecule [20�]
(Figure 2g). This method, designated host-lattice display,

was used to determine the structures of short peptides. In

principle, the EngBF-DARPin host lattice has been shown

to be capable of accommodating targets up to 40 kDa [20�],
but currently those targets still show high B-factors and

rather weak electron density, having motivated ongoing

further redesign to rigidify the positioning of the guest.

DARPin-DARPin rigid fusions
To extend this strategy further, target-binding DARPins

themselves that are helical on either side can be rigidly

connected with adjustable geometries to other DARPins

(D12 or other binders) by the shared helix concept

(Figure 1). When fused to a binding DARPin with nine

different connector molecules, eight of them could be

crystallized and the molecular design could thus be

confirmed [68�]. One recent example where this strategy

of crystallizing with DARPin-DARPin rigid fusions (of a

binding DARPin with DARPin D12) was applied is the c-

Jun N-terminal kinase 1 [50], for which a simple mono-

meric DARPin never resulted in crystals of the complex.

Furthermore, the development of multivalent DARPin

chains further extends the initial concept of DARPin-

fusion chaperones, because each DARPin domain can not

only be a well-crystallizing entity like DARPin D12, but

additionally be directed against a separate crystallization

enhancer like MBP or GFP. Both tags are frequently used

in protein biochemistry; MBP to improve solubility and

GFP to visualize the target, and both typically crystallize

well. Tight-binding DARPins against MBP and GFP

derivatives and homologs, such as sfGFP and teal fluo-

rescent protein 1, have been developed and co-crystal-

lized with the targets [71,72]. Human dual-specificity

phosphatase 1 that failed to crystallize as an MBP fusion

protein only crystallized readily in complex with DARPin
Current Opinion in Structural Biology 2020, 60:93–100
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off7, binding to the fused MBP [73]. DARPins off7 and

3G124 have been inserted in DARPin-DARPin rigid

fusions, and crystal structures in complex with MBP

and GFP were determined [68�] (Figure 2d).

Polyvalent DARPin-DARPin rigid fusions therefore

serve as molecular probes with precisely defined geome-

tries, and are thus useful not only to improve crystalliza-

tion, but also to investigate the spatial restraints for

receptor signaling, for example, HER2 [74]. Here, a

HER2-binding DARPin was fused to a non-binding

DARPin in two different geometries, and with the differ-

ential binding of the two fusions it could be shown that

HER2 in the cell membrane does not assume a tethered

conformation to any detectable amount — unlike all other

EGFR family members [74] (Figure 2c).

DARPin fusions for cryo-EM
The necessity to amplify the signal of the diffracted

waves by a crystalline arrangement of molecules limits

the application of protein crystallography. Single particle

cryo-EM doesn’t have this limitation, but it is currently

restricted to molecules larger than 40–60 kDa (mass of the

particle, that is, monomer or oligomeric assembly). DAR-

Pins were also instrumental to shift this limit further

down. Using the rigid helix fusion strategy described

above, DARPins were linked to a large oligomeric, sym-

metric assembling unit. An artificial cage protein with

tetrahedral symmetry and A12B12 stoichiometry was

selected as the assembling unit and the DARPin was

fused to subunit A, which generated 12 identical target

binding sites. 3D image analysis and symmetry averaging

yielded a 3.1 Å resolution structure of this EM chaperone

[75]. To show that this DARPin-cage fusion protein is

useful for determining structures of small proteins, the

structure of the 26 kDa protein GFP was determined with

a resolution overall and for the target of 3.5 Å and 3.8 Å,

respectively [76�] (Figure 2g). In parallel, the cryo-EM

structure of GFP was determined by an alternative DAR-

Pin-based design. In this systematic approach, six differ-

ent assembling units were tested [77�]. Finally, the

DARPin was fused to the N-terminus of aldolase, a

protein that shows D2 tetrameric symmetry

(Figure 2f). This EM chaperone was also used to deter-

mine the structure of GFP with resolutions of 3 Å and

4�8 Å for the aldolase and GFP:DARPin domains,

respectively.

In the cage-based assembling unit there are three DARPin/

target complexes located around the vertices, which pro-

vides more data for structure averaging, albeit at the

expense of steric hindrance between them. In the aldol-

ase-based assembling unit there is more space for the target

but fewer copies for averaging, which probably causes the

lower resolution of the target. Currently, a number of other

oligomeric designs are under development.
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Conclusions
Since their development, artificial binding molecules

from the DARPin architecture have now matured into

very useful tools for protein biochemistry, including

structural biology — besides their use in the clinic.

Several crystal structures of DARPin:target complexes

show that even naked monomeric DARPins are useful for

solving issues in crystallization, but fusing the DARPin

via a rigid helix to other robust domains significantly

expands their functionality in a very versatile manner.

This strategy allows researchers already to tackle some

fundamental challenges in structural biology, such as the

crystallization problem in X-ray diffraction and the size

problem in cryo-EM, and further design approaches are

on the way to further build on the versatile DARPin

platform.
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