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Abstract

Recombinant therapeutic proteins are playing an ever-increasing role in the clinic. High-affinity binding
candidates can be produced in a high-throughput manner through the process of selection and evolution from
large libraries, but the structures of the complexes with target protein can only be determined for a small
number of them in a costly, low-throughput manner, typically by x-ray crystallography. Reliable modeling of
complexes would greatly help to understand their mode of action and improve them by further engineering, for
example, by designing bi-paratopic binders. Designed ankyrin repeat proteins (DARPins) are one such class
of antibody mimetics that have proven useful in the clinic, in diagnostics and research. Here we have
developed a standardized procedure to model DARPin–target complexes that can be used to predict the
structures of unknown complexes. It requires only the sequence of a DARPin and a structure of the unbound
target. The procedure includes homology modeling of the DARPin, modeling of the flexible parts of a target,
rigid body docking to ensembles of the target and docking with a partially flexible backbone. For a set of
diverse DARPin–target complexes tested it generated a single model of the complex that well approximates
the native state of the complex. We provide a protocol that can be used in a semi-automated way and with
tools that are freely available. The presented concepts should help to accelerate the development of novel bio-
therapeutics for scaffolds with similar properties.

Crown Copyright © 2019 Published by Elsevier Ltd. All rights reserved.
Introduction

Protein–protein interactions mediate most biolog-
ical processes, including structural organization of
the cell, extra- and intra-cellular signaling and
metabolic pathways [1–3]. The specificity of these
interactions is maintained by a unique spatial
arrangement of the residues that form the contacts
between the molecules [4]. A single protein may
interact with multiple binding partners in orthogonal
ways, leading to different biological effects [5].
Therapeutic proteins that only block some of these
interactions would be desirable. In other instances,
receptors can be blocked by bi-paratopic therapeutic
binding molecules [6] which need to interact with the
receptor in precise geometric arrangements. In all of
these and many other instances, a structural
t © 2019 Published by Elsevier Ltd. All rights
understanding of the interaction of the target with
the binding protein would be instrumental in devel-
oping improved protein-based therapeutics.
Although in vitro selection methods of protein

binders may promote binding to certain regions on
the target protein surface, such a bias largely
depends on the target, that is, if the targeted
subdomains can be expressed individually and be
stable during the selection, or if reagents that mask
unwanted surfaces are available. Even in these
favorable cases, there are usually still many possible
binding geometries, and the exact epitope remains
to be determined experimentally, typically by x-ray
crystallography with extremely uncertain time lines.
Therefore, a method to reliably predict the binding
mode of protein binders that can be used routinely
would greatly accelerate the development of bio-
reserved. Journal of Molecular Biology (2019) 431, 2852–2868
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therapeutics. Such a method would help not only to
explain the binder's mode of action but also to
rationally improve its design.
Predicting structures of protein complexes is still a

major challenge. This is because a number of
isoenergetic conformations of proteins coexist and
the nature of energy functions is only approximate. A
number of protein–protein docking algorithms have
been developed, for example, ZDOCK [7],
HADDOCK [8], PIPER [9], SwarmDock [10],
GRAMM-X [11], DOCK/PIERR [12], Hex FFT [13],
ATTRACT [14] and RosettaDock [15]. Their perfor-
mance is periodically challenged in the Critical
Assessment of Predicted Interactions (CAPRI) [16].
Whereas most of the available algorithms can, in
many cases, generate several solutions including
near-native ones, the near-native solutions rarely
score best. Scoring remains a primary challenge,
because scoring functions only roughly approximate
free energy differences between different conforma-
tional states [17]. In addition, the algorithms are often
trained on sets of bound complexes, where binding
partners match each other perfectly (ideal but artificial
lock-and-key model) [18]. Real-life docking of un-
bound structures that have been experimentally
determined as separate proteins, or even only as
homologymodels, where the interface is not in perfect
shape complementarity to the bound partner, is much
more difficult [17]. It requires different approaches, like
softened energy functions to tolerate clashes or
exploiting different binding models (induced-fit or
conformational selection) that take into account
small conformational changes upon binding [19,20].
The algorithms are typically evaluated on a diver-

sified benchmark set that includes unbound structures
of different complexes, classified asenzyme–inhibitor,
antibody–antigen and others [21,22]. The best algo-
rithms are successful in 20%–30% cases, where
success is defined as finding a near-native solution
within the top 10 models [17]. When only the single
top-scoring model is considered, which would be the
requirement to include such predictions in an actual
project workflow, the success rate drops to 0–12%
[17]. To improve ranking of the near-native solutions,
many more re-scoring functions have been devel-
oped, but overall, they improve prediction only to a
small extent [23,24].
Because of these low success rates, modeling

strategies have been proposed that are individually
adapted to a single complex of interest, with their
success depending on modeling expertise, with an
inherent risk of subjectivity, rather than being based
on a reproducible procedure. Such strategies are
low throughput and hence less attractive for a routine
access to structural information. A general protocol
that could be applied to an entire class of binders
would be particularly valuable given that the number
of selected binders grows too rapidly to be followed
by experimental structural characterization.
The need for computational modeling of protein
binders is reflected by the constant interest in
antibody docking and design [25–27]. Modeling
antibodies, however, is particularly challenging
because their binding mode involves the interaction
of six complementarity-determining loops, some of
which are considerably flexible. Designed ankyrin
repeat proteins (DARPins) are antibody mimetics
[28] with a broad range of applications [29–30].
Analogously to antibodies, they can be selected from
randomized libraries against an arbitrary target
protein of choice. They are very stable, and easy to
produce and to handle [28,30]. DARPins have a big
potential for diagnostics and as therapeutics [31].
For instance, a DARPin can distinguish between the
active and inactive active form of a kinase [32],
detect tumor cells with specificity higher than the
corresponding Food and Drug Administration-
approved antibody [33], target adenovirus to the
specific tissue [34], or induce cell-specific apoptosis
[6]. At present (May 2019), several DARPins are
undergoing clinical trials (ClinicalTrials.gov Identifier:
NCT03418532, NCT03136653, NCT02194426,
NCT03084926, NCT03539549, NCT02462486,
NCT02186119, NCT02462928, NCT02181517,
NCT02181504).
DARPins, with most of the advantages of antibod-

ies as protein reagents for research and already
proven in the clinic as therapeutics, constitute a
favorable case for computational modeling. First,
they are rigid and even their binding loops have
limited conformational flexibility, which largely re-
duces the sampling space. Second, they are fairly
small (~15–18 kDa), which significantly reduces
computation times. Finally, they are structurally
very similar to one another, and this simplifies
homology modeling.
In this paper, we report on a general strategy that

can be applied to predict the structure of DARPin–
target (DT) complexes. Through extensive search
for optimal parameters, we developed a procedure,
involving modeling, docking and ranking of the
models, that is tailored to this particular type of
protein–protein complexes, without being tailored to
an individual target. It consists of steps performed
within the Rosetta modeling software [35] and
ClusPro docking algorithm [36] and is based on
newly developed scripts and new scoring and
filtering approaches. We thus established a protocol
that correctly predicted seven out of seven com-
plexes, which included diverse targets of different
sizes and folds, bound to DARPins derived from
different selection libraries. This single protocol
predicted not only near-native structures of all
these complexes as single top-scoring model but
importantly also the complexes that were not used in
optimization. The protocol requires only the unbound
structure of a target and the sequence of a DARPin
and can be performed in a semi-automated way.

http://ClinicalTrials.gov


Table 1. Overview of the receptors used for modeling

Receptor PDB ID of
the

complex
(chains)

PDB ID of the
unbound receptor

(chain)

Fold Cα RMSD between
bound and unbound

receptor (Å)

Cα RMSD between
bound structure and an
ensemble closest to it

(Å)

Flexibility ratioa

Full structure Epitopeb Full structure Epitope

HER2_IV 4HRN (BC) 1N8Z (C, 509-579c) Loops (S-S) 0.67 0.60 0.47 0.71 27/80 = 34%
GFP 5MA6 (AB) 1GFL (A) β 0.89 0.52 0.88 0.53 36/230 = 16%
IL4 4YDY (AI) 2B8U (A) α 2.05 2.30 2.02 2.28 26/129 = 20%
KRAS 5O2S (AB) 4OBE (A) α/β 1.31 1.38 1.27 1.42 20/169 = 12%
PLK1 2V5Q (BC) 2OWB (A) α + β 0.63 0.52 0.62 0.52 35/294 = 12%
IL13 5KNH (DI) 1IJZ (A) α 2.23d 2.78 2.13 2.65 58/113 = 52%
Cathepsin B 5MBL (AB) 6AY2 (A) α + β 0.42 0.35 0.41 0.38 22/255 = 9%

a Number of flexible residues/total number of residues. All residues in 3-aa segments with RMSF N0.2 Å are considered as flexible.
b Defined as residues within 5 Å of any DARPin atom in bound crystal.
c Domain IV of the receptor.
d Largest flexible loop was not resolved in bound crystal structure, hence excluded from RMSD calculation.
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Results

In order to optimize the modeling procedures we
selected five DARPin-target (DT) complexes from
the Protein Data Bank (PDB). Although there are
more structures available, many of them are
redundant (the same DARPin with different exten-
sions), contain different DARPins that recognize the
same or overlapping epitopes, or are complexes that
contain DARPins that bind differently but still to the
same target (for instance, there are 20 complex
structures of a DARPin with multidrug exporter AcrB).
To avoid possible biases toward DARPin sequence,
epitope structure, and the target structure and fold in
general, we focused on several representative com-
plexes. We aimed to cover a broad diversity of targets
aswell asDARPins, although the latter are structurally
similar. We looked for monomeric targets of different
sizes and folds, being less than 300 amino acids
in length to reduce the cost of computation (see Table
1). The DARPins contained either two or three internal
repeats between the N- and C-terminal capping
repeats (denoted as N2C or N3C, respectively).
We chose the following complexes: DARPin G3

bound to domain IV of human epidermal growth
factor receptor 2 (HER2_IV) [37], DARPin 3g124
bound to GFP [38], DARPin 44C12V5 bound to
interleukin 4 (IL4) (PDB ID: 4YDY, unpublished),
DARPin K27 bound to human KRAS [39] and
DARPin 3H10 bound to kinase domain of polo-like
kinase-1 (PLK1) [40]. We will further refer to the
DARPin as “ligand” and to its binding partner as
“receptor,” as is commonly done in the protein–
protein docking literature.
To further test the performance of the procedure,

we looked at all remaining DT complexes available
in the PDB, with different receptors, considering
those receptors that were monomeric and less than
300 amino acids in length (because such complexes
were also used in optimization of the modeling
steps). From among five such receptors, we chose
complexes with interleukin 13 [41] (IL13; PDB ID:
5KNH) and cathepsin B (PDB ID: 5MBL, unpub-
lished) for further tests. We also considered the
remaining complexes with BCL-W [42] (PDB ID:
4K5A), aminoglycoside phosphotransferase [43]
(APH; PDB ID: 2BKK) and domain I of HER2 [37]
(HER2_I, PDB ID: 4HRL), but excluded them for the
following reasons. BCL-W is known for its extensive
flexibility, and the reported structure of BCL-W in
isolation was unusual for members of the family; in
fact, a DARPin binder used as a co-crystallization
chaperone was discovered to stabilize BCL-W in a
conformation typical for other members of the BCL-2
family [42]. Similarly, APH undergoes a significant
conformational change upon binding (two helices
spread to accommodate DARPin loops) [43]. Be-
cause of these a priori known conformational
changes upon binding, these two complexes were
considered as too challenging at the current stage
and excluded from analysis (Fig. S1); the general
topic of receptor flexibility and the remaining
limitations will be discussed later. Modeling the
complex of HER2_I would be problematic for a
number of reasons. First, the binder that recognizes
HER2_I constitutes an unusual exception among the
known DT complexes as the flexible histidine tag, a
feature introduced at the N-terminus of a DARPin for
purification purposes, is in this case also involved in
binding. Second, the target contains a long flexible
loop, unresolved in available unbound structures,
which would require an individual modeling ap-
proach—this complex was therefore considered as
too challenging and excluded, too.
A simplified scheme of the modeling pipeline is

depicted in Fig. 1, and its particular steps (sections in



Fig. 1. Schematic protocol for modeling and docking of DARPins. The procedure can be completed within a few days.
The most time-intensive step is flexible docking, which depends on the size of the receptor and the computational
resources.

Fig. 2. Overview of homology modeling of DARPins. Diverse template structures were used for modeling, including
those with two or three internal repeats (N2C or N3C) and different C-capping modules (the template derived from PDB ID:
2XEE contains the next-generation C-cap, called Mut5). Final models (magenta) were structurally aligned to crystal
structures of the DARPin within the complex (green) and Cα RMSD was calculated. 3H10 (PLK1 binder) was a special
case where the C-cap of the N3C template was removed (as it was experimentally shown that the cap clashes with the
receptor and partially unfolds [40]).

2855Designed Ankyrin Repeat Protein Complexes



2856 Designed Ankyrin Repeat Protein Complexes
the panel) will be described below. The detailed
version of the protocol can be found in Methods and
Supplementary Methods. The crystal structures of
bound complexes were not used in modeling but
only as evaluation of different modeling stages as
well as the entire modeling success.

Homology modeling of DARPins

We developed a set of templates for DARPin
modeling with Rosetta (Supplementary Files). The
templates are PDB structures of consensus N3C
DARPins with different caps (PDB ID:2QYJ, 2XEE),
or N2C structures derived from them by removal of
the second internal repeat (details in Supplementary
Methods). These templates were used as input
structures for fixed or flexible backbone design
followed by all-atom refinement (see Methods for
details). After clustering, we obtained models with
b1 Å Cα RMSD from the corresponding crystal
structures of the DARPin within the complex (Fig. 2).
This suggests that the homology modeling of
DARPins is rather straightforward because of their
rigidity. As expected, the largest discrepancies occur
within the loop regions.

Receptor modeling

Proteins are flexible and undergo conformational
changes upon interacting with one another. Confor-
mational changes can range from large movements,
like domain reorientation or loop movements, to very
small conformational adaptation of side-chain rota-
mers at interfaces between proteins. Because of the
flexible nature of proteins, the interfaces of partners
in the unbound form normally may not match each
other perfectly. One of the strategies to account for
protein flexibility is to consider ensembles of
structures representing the variability of receptor,
ligand, or both, existing in a number of different
conformations. There are a number of ways to
generate ensembles [44], one of them being Rosetta
backrub [45].
To account for receptor flexibility, we developed a

simple method to determine its most flexible regions
that is based on Rosetta backrub and Pymol. We
generate a number of ensembles (250) that are then
structurally aligned and the protein segments of
highest standard deviation of the position of each
atom around the average (root mean square
fluctuation, or RMSF) are calculated. With a lower
RMSF cutoff of 0.2 Å, 9%–52% of receptor residues
were considered as flexible (Table 1) and their
backbone atoms are then allowed to be moved by
Rosetta backrub to generate loop ensembles that
are later used for docking (Fig. 3).
Interestingly, ensembles that mimic the bound

state best are structurally only slightly closer to the
bound state than are the unbound structures to the
bound state, when entire receptors are compared.
When instead only epitope similarity is considered,
conformations closer to the bound state are sampled
only in some cases, and the distance to the bound
state does not decrease much (Table 1). How these
ensembles may contribute to the docking prediction
success will be discussed later.

Rigid-body docking with ClusPro

ClusPro is one of several docking servers, freely
available for academic use. It is based on the PIPER
algorithm that performs Fast Fourier Transform-
based rigid-body docking. PIPER samples and
scores billions of receptor-ligand poses [9]. The
key step in ClusPro involves clustering of the best-
scoring poses, assuming that the largest cluster
corresponds to the broadest, and hence near-native,
funnel in the binding energy landscape. ClusPro has
constantly been the most successful automated
server for global docking in CAPRI [36].
We use 20 loop ensembles as independent

receptor inputs for ClusPro, always with the same
single model of the DARPin ligand. We found that
DARPin models are too similar to each other to make
it worthwhile to include more models. From the
different scoring functions available in ClusPro, we
found the default one—called “balanced”—to be the
most accurate for re-docking the bound DT com-
plexes (unpublished). We also noticed that if the
near-native solution was not present in the top 10
solutions, then it was usually not present at all
(unpublished). Therefore, we consider only top 10
solutions from each run. We run ClusPro with default
options, including repulsive constraints on the
DARPin side, as depicted in Fig. 4, as we know
that binding occurs on the concave randomized
surface in all known structures.
To make the whole procedure robust and work for

multiple complexes, we first spent extensive efforts
to evaluate the 200 (10 each from the 20 receptor
conformers) produced models (mostly using Roset-
ta, testing a variety of parameters and different
rescoring strategies). This led us to extending the
clustering approach, inspired by ClusPro itself, and
we noticed that further clustering based on Cα
RMSD allows to drastically narrow the pool of
models to consider. We call this step sequential
clustering.
Remarkably, most of the largest clusters within a

5-Å clustering radius in the optimization set were
already near-native (Table 2). In one case (PLK1),
the near-native cluster ranked as third. As in one
case (GFP), the near-native cluster was exception-
ally broad, we further clustered the pool within a
smaller radius of 2 Å to identify the most populated
region. In all cases, further clustering within 2 Å
helped to remove many models that were more
distant from the native conformation (see Average L-
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Fig. 4. Strategy for flexible docking. (a) Schematic representation of a DARPin structure. Residues constrained to be
involved in interaction with the receptor or explicitly not involved are indicated as green or black spheres, respectively. Only
two of the green spheres (one in α-helix and one in loop) need to be involved. (b) A scheme of relations between rigid and
flexible protein fragments (fold tree) designed for flexible docking of DARPins with Rosetta. Circled are jump numbers
(virtual bonds between residues). Gray regions or solid arrows indicate protein segments considered as rigid (backbone
atoms). White regions with dashed lines represent flexible parts: DARPin loops (blue and orange; as in panel a) and
receptor regions defined as flexible according to our Rosetta backrub-based protocol (as in Fig. 3). Note that each receptor
will have a different number of flexible regions with very different spacing. Jump 1 (dashed arrow) is a connection between
the centers of mass of both molecules and is also flexible (this allows motion of molecules relative to each other).

2858 Designed Ankyrin Repeat Protein Complexes
RMSD in Table 2 or Fig. S2). Whereas in most cases
centers of 2-Å clusters did not change compared to
centers of 5-Å clusters (suggesting a symmetric
distribution of decoys around the cluster), the 2-Å
center for GFP complex shifted significantly toward
native from 25.5 to ~3.9 Å. Based on these obser-
vations, we considered the three largest 5-Å
clusters, clustered them further within a 2 Å radius
Fig. 3. Overview of receptor modeling. (a) RMSF of Cα ato
atom ensembles generated by Rosetta backrub were aligned
fragments was calculated, and is plotted as a function of the
Regions with RMSF N0.2 Å are defined as flexible and ind
(magenta). (c) Unbound structure of the receptor (magenta
ensembles are indicated in other colors. For details, see Table
and took the centers of these sub-clusters for the
next steps.

Flexible docking with Rosetta

To further account for protein flexibility, we devel-
oped a flexible docking protocol that mimics induced-fit
conformational changes by including flexible loop
ms as a function of protein residue. Two hundred fifty full-
to the template structure and RMSF of 3-residue protein
first residue of the 3-residue segment (denoted resi). (b)
icated in cyan on the unbound structure of the receptor
) aligned to the bound structure (green). Twenty loop
1.
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minimization [46]. It is known that constraints, that is,
any information about atoms that are involved in
binding, help in docking by significantly narrowing
the search space [47]. Knowing that specific
DARPins invariably bind via their randomized
surface, we defined a few general constraints for
docking. These include repulsion at the backside of
the DARPin that is not involved in interaction, and
attraction at the randomized positions that usually
bind the receptor (Fig. 4a). Each internal repeat of a
DARPin contains randomized positions in the α-
helix and in the loop, but not all of the repeats are
necessarily involved in interactions. Therefore, we
defined an “attractive” constraint to be satisfied if
any of the chosen loop residues and any of the
chosen helix residues is involved in binding. In other
words, an attractive constraint would be satisfied if
at least one of the repeats is involved in binding, and
constitutes thus a soft condition that will normally be
met.
We then built a scheme of the relations between

rigid and flexible protein fragments for Rosetta—
called "fold tree" [46]—where flexible segments are
DARPin loops (defined as in Fig. 4a) and receptor
loops, as determined above. A scheme of such a
universal fold tree is shown in Fig. 4b.
We explored the local energy landscape by local

flexible docking. One thousand decoys were gener-
ated for each input structure, that is, the centers of
each 2-Å cluster. Since three clusters were consid-
ered for every complex to be modeled, 3000
structures in total for a single complex were
modeled. We provide a template script with a sample
fold tree that can be easily adapted to any DT
complex, available in Supplementary Files.

Final ranking and scoring

Identifying near-native solutions in a crowd of false
positives is the primary challenge in protein–protein
docking [17,48]. We tried a variety of filtering and
ranking approaches to identify the near-native solu-
tions within the 3000 decoys. Our approaches were
based on different Rosetta scores aswell as clustering.
Although many alternative strategies have worked for
either one or two different complexes, they were never
robust enough to succeed in more than three cases at
the same time (unpublished observations).
Interestingly, Rosetta total_score was never a

good metric to distinguish the near-native cluster,
nor were scores accounting for binding energy
(dG_separated), packing (packstat) or shape com-
plementarity (sc_value), when considered individu-
ally. A parameter that allowed good discrimination of
the near-native cluster considers all these parame-
ters (dG_separated, packstat, sc_value) together,
where the weight of packing is increased (by
considering packing twice). We called this parameter
the p2gs score (Table ST1 and Table ST2). This may



Fig. 5. Flexible docking with Rosetta. Score (total_score, blue plots) or binding energy (dG_separated, black plots) of the models from the near-native cluster as a
function of L-RMSD values. In all cases, solutions closer to the crystal structure of the complex than the input model (indicated by vertical line) were generated.
Total_score axes were scaled such that the y-axis midpoint is at the mean, and the axis stretches symmetrically to the observed minimum (with a further distance of 10
REU on either side) and the same distance is plotted to define the maximum (e.g., if the mean total_score value for the set of 1000 decoys was −400 REU and the
minimal value was −500 REU, then the axis stretches from −390 to −510 REU). All dG_separated values within models generated for each complex are shown.
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Table 3. Quality of top models sorted by binding energy or total energy

G3:HER2 3g124:GFP 44C12V5:IL4 K27:KRAS 3H10:PLK1 6G9:IL13 81:CathepsinB

Rank dG_separated
1 0.63/3.25/1.99a 0.91/4.00/1.51 0.49/4.33/2.13 0.75/6.56/2.33 0.79/5.23/1.9 0.71/3.12/1.97 0.45/8.50/2.75
2 0.67/2.94/1.98 0.91/3.07/1.31 0.68/3.06/1.79 0.77/4.53/2.07 0.75/7.11/2.6 0.66/3.49/2.21 0.43/9.68/3.16
3 0.71/3.45/2.03 0.89/4.67/1.52 0.65/3.60/1.58 0.83/4.20/1.98 0.68/11.05/2. 0.69/2.80/1.96 0.53/8.03/2.84
4 0.67/3.08/2.00 0.89/5.43/1.62 0.46/4.55/2.21 0.62/7.50/2.50 0.74/10.61/2. 0.66/1.88/1.90 0.53/7.84/2.71
5 0.75/3.03/1.91 0.91/2.23/1.22 0.49/4.70/2.25 0.45/8.73/2.74 0.70/12.13/3. 0.64/4.39/2.28 0.43/10.19/3.07
6 0.75/3.64/1.98 0.89/4.85/1.63 0.47/4.90/2.33 0.65/6.00/2.66 0.81/5.41/1.8 0.71/3.73/1.97 0.68/6.41/2.23
7 0.76/3.07/1.94 0.48/5.57/3.22 0.49/4.75/2.26 0.50/9.40/3.26 0.68/11.25/2. 0.62/4.57/2.48 0.55/7.76/2.84
8 0.65/3.20/2.08 0.87/1.86/1.29 0.62/3.70/1.68 0.83/4.30/1.96 0.60/12.41/2. 0.71/3.17/1.86 0.42/8.37/3.29
9 0.78/2.86/1.82 0.93/3.02/1.24 0.54/5.94/2.39 0.60/7.16/2.43 0.70/10.40/2. 0.72/2.68/1.94 0.50/8.51/2.96
10 0.67/3.42/1.93 0.48/9.82/2.90 0.65/3.18/1.64 0.50/7.86/2.36 0.57/12.32/2. 0.67/3.55/2.16 0.63/6.89/2.26

Rank total_score
1 0.76/3.07/1.94 0.91/4.12/1.26 0.26/9.66/4.06 0.33/9.68/2.33 0.87/1.76/0.8 0.71/3.33/1.82 0.65/6.79/2.62
2 0.57/5.72/2.85 0.89/4.74/1.43 0.60/1.73/1.37 0.48/8.46/2.07 0.70/11.07/2. 0.67/2.28/1.88 0.82/1.99/1.13
3 0.73/2.93/1.87 0.96/3.73/1.41 0.49/4.70/2.25 0.30/7.66/1.98 0.45/13.16/3. 0.71/2.68/1.82 0.43/9.08/3.07
4 0.71/2.90/1.92 0.93/2.31/1.22 0.65/3.60/1.58 0.70/3.72/2.50 0.77/3.56/1.6 0.66/3.13/2.05 0.65/3.26/1.52
5 0.59/4.25/2.11 0.80/5.22/2.09 0.37/7.35/2.73 0.40/8.95/2.74 0.91/1.84/0.7 0.67/2.88/2.05 0.38/8.64/2.88
6 0.63/3.12/2.03 0.89/2.19/1.37 0.34/7.11/2.54 0.32/10.95/2.66 0.43/8.41/3.1 0.67/3.03/1.90 0.40/7.80/3.18
7 0.65/3.16/2.09 0.93/3.15/1.17 0.47/3.19/1.69 0.70/6.00/3.26 0.74/10.94/2. 0.71/2.75/1.98 0.70/6.27/2.18
8 0.57/4.17/1.69 0.87/5.66/1.70 0.56/4.29/1.74 0.40/10.37/1.96 0.68/10.85/2. 0.66/2.71/1.83 0.77/4.86/1.62
9 0.73/2.73/2.05 0.89/4.04/1.40 0.44/5.16/2.18 0.02/17.70/2.43 0.38/11.16/2. 0.71/3.13/2.00 0.30/10.32/3.69
10 0.61/6.67/3.15 0.89/4.12/1.52 0.68/3.06/1.79 0.62/6.41/2.36 0.53/1.21/2.7 0.72/3.10/1.80 0.77/2.30/1.28

a f(nat)/L-RMSD/I-RMSD. Highest value of f(nat) and lowest values of L-RMSD and I-RMSD among top 10 are underlined.
f(nat), fraction of native residue–residue contacts; calculated with 5-Å cutoff; L-RMSD, ligand RMSD; calculated on the DARPin backbone a ter fitting on the target; I-RMSD, interface RMSD;
calculated on backbone atoms of all residues within 10 Å of the partner molecule.
CAPRI quality criteria: High quality: f(nat) ≥ 0.5 and (L-RMSD ≤1.0 OR I-RMSD ≤1.0); medium quality: f(nat) ≥ 0.3 and (1.0 b L-RMSD 5 OR 1.0 b I-RMSD ≤2.0); acceptable quality: f
(nat) ≥ 0.1 and (5 b L-RMSD ≤10 or 2 b I-RMSD ≤4).
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Fig. 6. Final models according to binding energy (dG_separated) (cf. Table 3). Models (blue) were structurally aligned to receptors in crystal structure complexes
(green) to indicate the position of the DARPin (reflecting the different L-RMSD values).
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be interpreted such that, according to Rosetta, the
decoys around native structure have on average
better binding energy, packing and shape comple-
mentarity than the decoys around a false positive
structure. This also means that the other terms,
many of which are knowledge-based (i.e., derived
from PDB statistics), that contribute to Rosetta
total_score are not discriminative in our cases.
In the last stage,we chose thebestmodel fromwithin

the near-native cluster. We found the binding energy
(dG_separated) a discriminator thatwasbetter than the
total energy (total_score), as in most cases the
correlation between dG_separated and RMSD was
more pronounced. The energy plots for decoys
generated around near-native input models are
shown in Fig. 5. The top 10 decoys from each ranking
(by binding or total energy) are also listed in Table 3.
Interestingly, the p2gs score, which well discriminates
the near-native cluster, is less accurate in ranking
modelswithin the near-native cluster according to their
quality (Table ST3).
We computed the fraction of native contacts,

ligand RMSD, and interface RMSD according to
CAPRI definitions. We considered a decoy with the
best binding energy, dG_separated, as our final
model (Fig. 6, Table 3). In most cases, we obtained
models better than the models after sequential
clustering (see Table 2). According to CAPRI
definitions, we ended up as the top scoring model
for each complex with five medium quality models
and two acceptable models as the single model (top
line in Table 3). We consider this as a refinement
success. Interestingly, in all cases, even better
solutions (closer to native) were generated, but we
could not find a uniform measure to identify them in
all complexes.
Discussion

We developed a strategy to generate structural
models of DARPin complexes with their targets,
starting from the crystal structure of the unbound
target and only the DARPin sequence. This is the
scenario encountered when binders have been
selected from a library against a target. It would
offer great insight, if the epitopes and orientations of
the binders on the target could be determined
routinely to elucidate the molecular origin of the
biological activity, or its absence.
The strategy has been optimized with structures of

diverse complexes and tested on these, as well as
on additional unrelated complexes. In all cases we
were able to obtain a single model that was near-
native and would be classified as “medium” or
“acceptable” model according to CAPRI criteria.
We found several steps of the protocol crucial for
this success and will discuss them in more detail in
the following paragraphs.
The first important step is sequential docking to
different receptor ensembles. The ensembles are
generated by exclusively varying the conformation of
receptor fragments that we define as most flexible.
This reduces unnecessary exploration of the struc-
ture space around rigid segments and, instead,
introduces more diversity to the flexible parts at
similar computational costs.
Whether ensembles may increase docking suc-

cess rates has been previously discussed [19,49].
We believe that in the case of small conformational
changes, where the epitope does not have to be first
uncovered, or significantly move toward the bound
state (insightfully discussed by Kuroda and Gray
[50]), it is most important to slightly relax the epitope
to probe binding. As the native complex should be in
a broad energetic minimum, such small perturba-
tions should not greatly disturb binding. On the other
hand, they would hamper false positives that score
well only because of particularly good local geom-
etries, but would no longer bind even after very small
movements. In other words, minor movements of the
backbone at the interface should not prevent native
binding but would remove some of the false
positives. Indeed, among our examples, near-
native models were found within models containing
different receptor conformations and not just in a
single conformation that was closest to the bound
state, emphasizing the width of the energy funnel of
the native complex. In the case of the DARPin–GFP
complex, the entire native epitope was determined
as rigid. Therefore, as we hypothesize, loop ensem-
bles far from the binding region might have removed
a number of false positives, since they would bind to
only a single conformer. Docking 3H10 to the
unbound structure of PLK1 as a control (using 20
independent ClusPro simulations, but instead of 20
target ensembles, using the same unbound structure
of the target—not subjected to backrub) did not
generate any near-native model among the 200
solutions (not shown). Sequential clustering of
models containing only the ensemble of target
structures (instead of the single structure) allowed
narrowing the 200 models from ClusPro to the three
most populated groups (clusters), one of which was
in all cases near-native.
The second challenge was to distinguish the correct

model out of the three highest-ranking clusters. We
took the cluster centers as a starting point for high-
resolution flexible docking with Rosetta. Despite
individual successeswith a number of diverse attempts
of filtering, sorting and scoring, we strived to find a
robustmethod that wouldwork for all five diverse cases
used for optimization and could thus form the basis for
a more generic approach. We therefore came up with
the idea of comparing average scores of setsof decoys
generated from individual input structures. This ap-
proach is again based on the assumption that the near-
native structure should lie in a broad funnel on the
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energy landscape, and the average energy of the near-
native cluster should be lower than the average energy
of false positive clusters (even if single decoys may
score better than any near-natives). In other words,
false positives should score less favorably after local
perturbations (because they lie in a narrow energetic
minimum and thus in a narrow minimum of the scoring
function).
An alternative approach of exploring the local

minima of the scoring function was proposed by
Kozakov et al. [51]. There, the stability of the cluster,
corresponding to the broadness of the energy
funnel, is assessed by the convergence of cluster
members to a single structure after Monte Carlo-
based local docking. Our approach provides an
effective alternative by exploiting the same assump-
tion about the energy landscape in a different way,
which is independent of the additional uncertainty of
successful convergence.
From all the different Rosetta scores, as well as

the additional metrics that we introduced, the final
ranking of the near-native cluster by binding energy
was the most discriminative. We took the best-
scoring model as the final one, but other models in
the top 10 were on average similarly good (except for
PLK1), and choosing a random model of these 10
would in most cases still be safe. Interestingly,
Rosetta often sampled exceptionally good solutions
that were less than 2 Å L-RMSD (Fig. 5), but we
could not find a unified way to identify them.
Nevertheless, solutions at 10 Å L-RMSD would in
most cases still be a good approximation of the
binder's position, sufficient to redesign the less
promising candidates by rational mutagenesis, or
designs of flexible or rigid linkers that often connect
DARPins to each other [37], or to other functional
moieties that should not interfere with binding (small-
molecule drugs, dyes, PEG) [52]. On the other hand,
solutions that are less than 10 Å off can often be
refined by other approaches, for example, molecular
dynamics [53,54].
Remarkably, even solutions as far as 10 Å L-

RMSD off the native conformation captured a high
fraction of native contacts, which comes as a result
of side-chain and backbone flexibility. Therefore,
even when the rigid body orientation is not perfect,
such loops and side-chain conformations are pre-
ferred that maintain the correct residue–residue
contacts. The knowledge about interacting residues
may already serve for improved design by rational
mutagenesis.
There are some limitations that remain. One, very

vivid to the entire modeling field, is the flexibility of
proteins, here limited to the target, as DARPins are
rather rigid. Remarkably, in some cases, even
despite quite significant conformational changes
induced by binding, we could still identify near-
native models. In KRAS, an entire helix shifts toward
the bottom side of the DARPin. Apparently, this
interaction is not critical and, most importantly, lack
of this conformational change in the receptor does
not prevent binding. In other cases, like APH or BCL-
W, the conformational change upon binding is too
massive to recapitulate it with Rosetta backrub, and
it would be hard with other methods, too.
The change in APH seems to be very much

induced by the DARPin ligand that slips in between
two helices (Fig. S1). Sampling such conformations
without the presence of the ligand is extremely
difficult, although this state must be populated to
some degree for binding to occur. The Cα RMSD
between bound and unbound APH is 3.22 Å for the
full structure and 4.83 Å for the epitope. We
attempted to model this challenging complex with
our protocol. Nevertheless, as expected, the differ-
ence between the bound and the unbound state
appeared to be too large, and none of the 200
models generated by ClusPro were near-native. A
key reason for this failure was that this epitope,
consisting of two helices, was not recognized as
flexible by the Rosetta backrub-based method. For
this reason, we also tried to recapitulate the bound
state with another recently published tool—CABS-
flex 2.0 [55]. This method was trained on a database
of molecular dynamics simulations and might be
expected to better reflect larger conformational
changes. Nevertheless, also CABS-flex 2.0 evalu-
ated this epitope as rigid, emphasizing the challenge
of sampling the rarely populated states. It is
conceivable that the conformational change within
the epitope becomes only energetically accessible in
state already partially bound by the DARPin, which
would make modeling of such complexes extremely
challenging. On the other hand, bound docking in
ClusPro generated a near-native solution as the first
rank (Table ST4), indicating that scoring should not
be a problem in this case.
BCL-W contains large flexible loops and long

flexible termini, one of which covers the epitope in
the unbound structure of the protein. In this case,
only very harsh sampling of the loop could perhaps
uncover the epitope. Interestingly, the bound struc-
ture of BCL-W makes it more similar to the structure
of other BCL-2 family members [42], again suggest-
ing that this conformation must be populated to some
degree, or binders would not have been selected.
A related problem may be any structurally unre-

solved parts of the receptor in its unbound structure. If
the missing loops are short (up to 5–6 residues), they
can usually be reasonably well modeled, for example,
with kinematic loop closure algorithms [56]. Other-
wise, more sophisticated approaches may be neces-
sary, for example, docking with loop rebuilding [46],
which are beyond the scope of this work. It is
particularly likely, though, for DARPins that the
missing part of the receptor is not involved in binding,
asDARPins normally bind towell-ordered regions of a
protein.
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Another limitation may arise at the level of scoring
in ClusPro. Docking of the bound structures,
although successful (defined as the presence of
near-native ones among top 10) for all complexes
investigated here, may not always work so well,
even despite the overall rigidity of the receptor
(Table ST4). For example, DARPin off7 fails in
docking to maltose binding protein even when
starting from the structures found in the complex,
most likely because the epitope is very rich in
lysines, which are statistically rare at protein–protein
interfaces [57] and thus receive an associated low
probability. In such a case, ClusPro would also likely
fail in docking of unbound structures or homology
models, which is even more demanding. Interest-
ingly, in this particular case, the use of “antibody
mode” in ClusPro, where the score function does not
include the knowledge-based DARS potential [58],
helps to resolve the problem (unpublished observa-
tions). We believe that a ClusPro score function
could in the future be weighted for DARPin com-
plexes, as was the case with the score function
tailored to antibody complexes [59].
What fractionofDTcomplexes is predictablewith our

method largely depends on the range of conformation-
al changes of the receptor upon binding. From the
complexes that we investigated, that is, monomeric
receptors of limited size—which are very often the
targets used for selections—it seems that most DT
complexes involving such receptors are rather rigid
and are thus suitable. Nevertheless, we caution that
the very fact that there is a structure of the complex in
the PDB database may be a bias for the fact that the
structure of the target is rather rigid.
Some estimates about the success potential of this

modeling method can be derived from just examining
the unbound structures. If they containmany loops that
appear flexible, the chance of success decreases,
simply because a DARPin may bind there and rigidify
the loop upon binding. On the other hand, the binder
may still recognize the rigid part of the receptor, as was
the case with IL-13. Interestingly, the unbound
structure for this case came from NMR, emphasizing
that our modeling strategy is independent of the
method used to obtain the unbound structure of the
receptor.
Acknowledging the above limitations, the strategy

presented here may be robust to predict a number of
DT complexes, provided that the target is not too
flexible. What we find especially noteworthy is that a
single objective modeling protocol that can be execut-
ed without human bias can generate a single near-
native model of the complex in 7 out of 7 cases that
fulfilled our entry criteria, or 7 out of 10 cases, when not
taking prior knowledge of conformational changes into
account. This is not a standard achievement when so
many modeling steps are included, and we identified a
robust way to distinguish the near-nativemodel among
several candidates.
The three complexes that would not be predictable
with the presented strategy are characterized by
significant conformational changes upon binding, or
involved a non-canonical contribution to the binding
mode of a DARPin (partial contribution via the
histidine tag). Nevertheless, the protocol is suitable
for receptors of diverse folds and sizes, as well as
DARPins of different length and with various muta-
tions, even including deletions, and by analogy, a
small insertion should not be a problem either. It does
not require large computational resources, and, if
these are still scarce, one could also stop after the
sequential clustering, ending with three models that
contain a lower-quality near-native structure. Re-
markably, we did not use any biochemical data at all
to navigate docking, although it was available. Often,
information from mutagenesis studies, competition
studies, or HDX/MS could further narrow the number
of model candidates and improve the prediction
quality.
Finally, although the strategy was optimized with

and for DARPins, we neither modified the energy
functions nor included any known DARPin-specific
statistical potentials. Therefore, it is likely that the
approach, including ensemble docking with se-
quential clustering, as well as comparing average
p2gs score of clusters in Rosetta could be
extended to other protein–protein complexes,
especially those including other rigid protein scaf-
folds, for example, like leucine-rich repeat proteins
or affibodies.
Methods

Software and hardware

Rosetta 3 [35] (version 59,812), the ClusPro
docking server [36] and Pymol 2.1.0 (Schrödinger)
were used for modeling, docking and analysis. R
software [60] was used to analyze data.

Modeling

The full detailed protocol which was used for every
complex in this study is described in Supplementary
Information. All templates and scripts are available
a t h t tps : / /g i thub .com/TheP lueck thunLab/
DARPin_Docking.
Briefly, PDB structures 2QYJ, 2XEE and their

derivatives (see Supplementary Methods for details)
were used as templates for homology modeling of
DARPins with Rosetta. Desired mutations were
introduced with fixed backbone design [61] or,
when loop insertion was necessary, with the flexible
backbone design protocol [62]. Models were refined
with Rosetta.relax [63] in 40 independent trajecto-
ries, and the models were clustered within 0.2-Å

https://github.com/ThePlueckthunLab/DARPin_Docking
https://github.com/ThePlueckthunLab/DARPin_Docking
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radius in Rosetta.cluster. The best scoring model of
the largest cluster was considered further.
The unbound structure of the target (receptor) was

subjected toRosetta.backrub [64]. Two hundred fifty
generated ensembles were structurally aligned, and
the Cα RMSF of the 3-residue protein segments
were calculated. Residues in segments with RMSF
N0.2 Å were considered as flexible. Twenty loop
ensembles of the target were generated with
Rosetta.backrub performed exclusively on flexible
parts.
Rigid body docking was performed in ClusPro, with a

single DARPin model and the 20 target ensembles
individually. Repulsive constraints on the DARPin side
were included. The top 10 solutions of each simulation
were combined (200 models) and clustered sequen-
tially with Rosetta.cluster: three largest clusters within
5 Å radius were further clustered within 2 Å radius and
the centers of these clusters were considered further in
flexible docking.
Flexible docking was performed in Rosetta with a

custom Rosetta script [65], available in Supplementary
Files. It was based onWang et al. [46], the synthesis of
valuable suggestions from the RosettaCommons
community (https://www.rosettacommons.org/forum)
and further optimization. Protein segments considered
as flexible were receptor loops, as determined above,
and DARPin loops (details in Supplementary
Information). Site constraints in the functional form of
(1/(1 + exp(−m*(x–x0))) − 0.5) were used throughout
the simulation, where x0 is the center of the sigmoid
function and m is the slope. The constraints were
centered at 8 Å. Repulsive constraints had a slope set
to −2.0. Attractive constraints had a slope set to +2.0
and were wrapped up into KofNConstraints, where at
least one condition had to be satisfied for the
KofNConstraint to be satisfied. The constraints were
applied at a weight = 5 to both low- and high-resolution
docking stages. The initial pose of the ligand was
perturbed along the vector connecting the centers of
mass of the two proteins and around its axis (Gaussian
distribution around 3 Å and 8°). Low-resolution, rigid
body docking was performed as in Gray et al. [15]. This
was followed by 50 cycles of high-resolution Monte-
Carlo minimization. Each cycle consisted of a random
perturbation (Gaussian distribution around 0.1 Å and
3°), repacking, minimization of side chains at interface,
repacking and minimization of backbone and side
chains of segments defined as flexible. For all
minimization steps within the cycle, the Ref2015
score function was used [66]. A single Monte-Carlo
minimization cycle was evaluated using the Metropolis
criterion on the docking score function [48]. An example
of constraint file, fold tree and the full script canbe found
in the Supplementary Files. Flexible docking in Rosetta
was performed for each of the three model candidates
(after sequential clustering) as input, generating
3 × 1000 new models. All decoys were analyzed with
Rosetta.InterfaceAnalyzer, and the average p2gs
score for sets of models derived from different inputs
were compared.
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