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A survival selection strategy for engineering
synthetic binding proteins that specifically
recognize post-translationally phosphorylated
proteins
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There is an urgent need for affinity reagents that target phospho-modified sites on individual

proteins; however, generating such reagents remains a significant challenge. Here, we

describe a genetic selection strategy for routine laboratory isolation of phospho-specific

designed ankyrin repeat proteins (DARPins) by linking in vivo affinity capture of a phos-

phorylated target protein with antibiotic resistance of Escherichia coli cells. The assay is

validated using an existing panel of DARPins that selectively bind the nonphosphorylated

(inactive) form of extracellular signal-regulated kinase 2 (ERK2) or its doubly phosphorylated

(active) form (pERK2). We then use the selection to affinity-mature a phospho-specific

DARPin without compromising its selectivity for pERK2 over ERK2 and to reprogram the

substrate specificity of the same DARPin towards non-cognate ERK2. Collectively, these

results establish our genetic selection as a useful and potentially generalizable protein

engineering tool for studying phospho-specific binding proteins and customizing their affinity

and selectivity.
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Many cellular activities are controlled by protein post-
translational modifications (PTMs), with over 200 dif-
ferent types having been identified1 including phos-

phorylation, acetylation, ubiquitination, methylation, and
glycosylation. PTMs serve to functionally diversity the proteome
by finely tuning the structure, stability, activity, subcellular loca-
lization, and protein interaction partners of the modified pro-
teins2. Whereas asparagine-linked (N-linked) glycosylation
dominates the number of putative PTMs, phosphorylation
dominates the number of experimentally confirmed PTMs by an
order of magnitude3. Indeed, phosphorylation easily ranks as one
of the most common PTMs in eukaryotes with well over 100,000
phosphosites identified in humans and related mammals and over
two-thirds of the 23,000 proteins encoded by the human genome
demonstrated to be covalently modified with phosphate by the
collective activity of >500 protein kinases4–8. Phosphorylation is
particularly important in signal propagation where it regulates the
function of numerous proteins in signaling networks by activating
or inhibiting enzyme activity through allosteric conformational
changes9–11. In light of the pivotal role played by phosphorylation
in signal transduction, it is hardly surprising that aberrant
phosphorylation either directly causes or is a consequence of
many human diseases, in particular cancer12.

Over the last two decades, mass spectrometry-based pro-
teomics has emerged as one of the most effective approaches for
analyzing PTMs and identifying their sites of attachment on
proteins, including phosphoproteins7,13–15. Given the steady
increase in the number of functionally important phosphoryla-
tion sites that have been uncovered, there is a growing need for
phospho-specific binding molecules16 that can be developed for
traditional biochemical approaches as well as advanced techni-
ques such as single-cell analysis17–19 and high-throughput assay
systems20–22. The most common affinity reagents for detecting
PTMs, and more specifically phospho-modified sites, are con-
ventional monoclonal antibodies (mAbs) that have been raised in
mice23. However, the use of animal immunization to isolate
phospho-specific mAbs is low-throughput, expensive, and time-
consuming, and is further hampered by technical challenges
associated with the widespread occurrence of phospho-epitopes,
which renders them weakly immunogenic in intact immune
systems. Hence, for most targets, no specific reagents exist, and in
cases where commercially mAbs are available, they are known to
be of highly variable quality and limited utility17,24.

The use of recombinant technologies that take advantage of
synthetic antibody libraries have emerged as a viable approach to
specifically select for binders against phospho-modified sites on
individual targets25–27; however, these approaches are often less
efficient than immunization. Another challenge is that
the resulting antibody fragments require intradomain disulfide
bonds for conformational stability, thereby precluding their use
as “intrabodies” in the reducing intracellular environment where
most phosphoproteins of interest naturally reside. This bottle-
neck can be overcome by using alternative non-antibody scaf-
folds for molecular recognition such as designed ankyrin repeat
proteins (DARPins), which do not contain disulfide bonds and
can be expressed in soluble form with high yields in the cyto-
plasm of living cells thereby allowing for intracellular
applications28,29. Indeed, using complex DARPin libraries,
Plückthun and coworkers isolated target-specific binders that
could reliably differentiate between two states of a protein post-
translationally modified by phosphorylation, and were subse-
quently shown to be functional in the cytoplasm of eukaryotic
cells30. However, a drawback to the synthetic library approaches
reported to date is that they rely on in vitro selection methods,
such as phage display or ribosome display, which are technically
demanding and labor intensive, and are implemented in cell-free

environments that may not accurately reflect the complex con-
ditions inside of a cell.

To address these shortcomings, we sought to adapt a previous
genetic assay termed FLI-TRAP (functional ligand-binding
identification by Tat-based recognition of associating proteins)
for selection of phospho-specific binders directly in living cells in
a manner that greatly simplifies the process by which synthetic
libraries are interrogated. FLI-TRAP is a complete in vivo selec-
tion and evolution technology based on the unique ability of the
twin-arginine translocation (Tat) system to efficiently colocalize
noncovalent complexes of two folded polypeptides to the
Escherichia coli periplasm31. This method has proven especially
useful for high-throughput selection of single-chain Fv (scFv)
antibodies that bind strongly to their cognate protein antigens in
the intracellular environment31–34.

Here, FLI-TRAP was functionally extended for detecting
phospho-specific interactions using the extracellular signal-
regulated kinase 2 (ERK2), a member of the mitogen-activated
protein kinase (MAPK) family, as a model system for specific
intracellular targeting of a protein as a function of its post-
translational modification. ERK2 activation is mediated by the
upstream MAP/ERK kinase 1 (MEK1), which phosphorylates a
threonine and tyrosine within a flexible surface loop
that undergoes small but significant conformational rearrange-
ments upon modification11. Upon combining FLI-TRAP with
a reconstituted MAP kinase phosphorylation cascade that pro-
motes cytoplasmic phospho-modification of ERK235, the
reformatted genetic assay called phospho-FLI-TRAP (hereafter
PhLI-TRAP) reliably reported the specificity and selectivity of an
existing panel of DARPins30 that selectively bind the nonpho-
sphorylated (inactive) form of ERK2 or its doubly phosphorylated
(active) form, pERK2. Following validation, PhLI-TRAP was
successfully used to enhance the affinity of a phospho-specific
DARPin for its cognate pERK2 antigen as well as to reprogram
the specificity of the same parental DARPin for binding to non-
cognate ERK2. Importantly, by linking antibiotic resistance with
phospho-epitope binding in the cytoplasm of E. coli cells, the
PhLI-TRAP method obviates the need for purification or
immobilization of the phosphoprotein target and only requires
selective plating of bacteria on solid medium to uncover pro-
ductive binders. Hence, our genetic selection represents a simpler
alternative to existing methods, offering savings in time and
resources, while at the same time providing a reliable tool for
generating phospho-specific affinity reagents that are both high
quality and renewable.

Results
A genetic selection for phospho-modified proteins. To develop
the PhLI-TRAP method for direct selection of phospho-modified
substrate proteins (Fig. 1), we employed DARPins against either
the unphosphorylated or the doubly phosphorylated form of the
MAPK ERK2 (ERK2 or pERK2, respectively). ERK2 is activated
by phosphorylation on Thr183 and Tyr185 residues, which is
catalyzed by MEK135. Specifically, DARPin pE59, which is
selective for pERK2, was cloned into a plasmid derived from
pBAD1833 that introduced the N-terminal Tat signal peptide
derived from trimethylamine N-oxide reductase (spTorA) for
targeting to TatABC followed by an RGS-His tag for convenient
detection. In parallel, a second plasmid was created in which
human ERK2 was genetically fused to the N-terminus of mature
TEM-1 β-lactamase (Bla), which acts as a selectable reporter for
transport to the periplasm. To generate phosphorylated ERK2 in
the cytoplasm, the gene encoding a constitutively active mutant of
human MEK1, namely MEK1R4F, which is capable of activating
ERK2 when expressed in E. coli35, was cloned bicistronically into
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the low-copy DARPin expression plasmid. We hypothesized that
co-expression of spTorA-pE59, ERK2-Bla, and MEK1R4F would
result in the formation of a heterodimeric complex between
spTorA-pE59 and phosphorylated ERK2-Bla (pERK2-Bla) in the
cytoplasm, which would subsequently be cotranslocated to the
periplasm according to the “hitchhiker” mechanism (Fig. 1)36.
Importantly, export of Bla to the periplasm renders E. coli cells
resistant to β-lactam antibiotics, thereby enabling simple clonal
selection to discriminate phospho-specific interactions.

In line with our hypothesis, co-expression of these three
constructs in wild-type E. coli MC4100 cells resulted in
MEK1R4F-dependent phosphorylation of ERK2-Bla (Supplemen-
tary Fig. 1a) and concomitant cotranslocation of the phospho-
modified substrate to the periplasmic space as confirmed by
western blot analysis (Supplementary Fig. 1b). We observed no
significant translocation of pERK2-Bla when pE59 was replaced
with the well characterized DARPin OFF7, which is specific for
maltose-binding protein (MBP)28, confirming the specificity of
pE59 for its cognate form of ERK2. Likewise, there was no
significant translocation of pERK2-Bla in the presence of: (i) an
export-defective mutant, spTorA(KK)-pE59, in which the essen-
tial twin-arginine residues of the N-terminal Tat signal peptide
were mutated to lysines thereby abolishing export out of the
cytoplasm (Supplementary Fig. 1b); or (ii) a double mutant of
ERK2 (mERK2) in which the kinase-essential phosphorylation

sites at Thr183 and Tyr185 were mutated to Glu and Phe,
respectively (Supplementary Fig. 1c).

When cells that exported pERK2-Bla to the periplasm were
analyzed by spot plating analysis, we observed strong carbenicillin
(Carb) resistance to a level that was even greater than that
observed for positive control cells co-expressing OFF7 with MBP-
Bla (Fig. 2 and Supplementary Fig. 2a). In contrast, negative
control cells co-expressing a Bla fusion involving the c-Jun N-
terminal kinase 2 (JNK2), a MAPK that is highly similar to ERK2,
exhibited little to no Carb resistance in the presence or absence of
MEK1R4F (Fig. 2 and Supplementary Fig. 2a), consistent with the
known specificity for pE5930. Importantly, the resistance
conferred by pE59, but not OFF7, was dependent on MEK1R4F

co-expression, indicating that the selectivity of pE59 for pERK2
over ERK2 was maintained. Along similar lines, we found that the
resistance conferred by pE59 was reduced to background in cells
co-expressing MEK1R4F and the phospho-mutant mERK2-Bla
(Supplementary Fig. 2b), providing further support of phospho-
selectivity. Collectively, these results confirm that both the high
specificity and selectivity of pE59 for the phosphorylated form of
ERK2 was retained in the genetic selection.

Genetic selection reconstitutes selectivity of other DARPins.
Encouraged by the results with pE59, we next investigated the
ability of the genetic selection to recapitulate the selectivity of two
ERK2-binding DARPins, E8 and E38, and two ERK2/pERK2-
binding DARPins, EpE82 and EpE89, that were all described
previously30. Spot plating experiments were performed as above
but with pE59 replaced by one of these alternative DARPins in
the low-copy DARPin expression plasmid. In the case of EpE82
and EpE89, which are known to bind equally well to both forms
of ERK230, we observed resistance profiles in the presence of
MEK1R4F that rivaled the level of resistance observed for cells co-
expressing spTorA-pE59 with pERK2-Bla (Fig. 3a and Supple-
mentary Fig. 3). These clones conferred relatively less resistance
to cells in the absence of MEK1R4F; however, resistance levels
were significantly higher than the pERK2-specific clone pE59,
confirming the ability of these clones to recognize both ERK2
forms. In the case of E8 and E38, strong resistance was only
observed in the absence of MEK1R4F (Fig. 3b and Supplementary
Fig. 3), consistent with the selectivity of these two DARPins for
the nonphosphorylated form of ERK2.

Selection of pE59 variants with improved affinity for pERK2.
Our previous studies confirmed that the efficiency with which a
TatABC-targeted binding protein escorts its cognate antigen-Bla
fusion to the periplasm depends on both the expression/stability
of the binding protein in vivo and its affinity for the antigen31,33.
Since most DARPins including those described above have
naturally high soluble expression yields in the E. coli cytoplasm37,
we hypothesized that pE59 variants with enhanced affinity for
cognate pERK2 antigen could be readily isolated by simply
demanding cell growth on Carb concentrations that would
otherwise inhibit the growth of cells expressing the parental pE59
clone. To test this hypothesis, we generated an error-prone PCR
library of pE59 sequences and cloned these just after the spTorA
signal peptide in the low-copy expression plasmid (that also
included the gene encoding MEK1R4F). Following co-
transformation of wild-type MC4100 cells with the plasmid
library along with the ERK2-Bla plasmid, positive clones were
selected on high concentrations of Carb (300-500 μg/mL) from a
starting library that contained ~105–106 members. These Carb
concentrations were chosen because they supported outgrowth of
positive hits from the library but inhibited outgrowth of indivi-
dual cells expressing the parental pE59 sequence. Following a
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Fig. 1 PhLI-TRAP-based isolation of phospho-specific binding proteins.
Schematic representation of engineered assay for co-translocation of
interacting receptor-antigen pairs via the Tat translocase (TatABC). The
assay enables discovery and optimization of synthetic binding proteins
(e.g., DARPins) with affinity for phospho-modified target antigens simply by
demanding bacterial growth on β-lactam antibiotics such as carbenicillin
(Carb), without the need for purification or immobilization of the
phosphoprotein target. The Tat signal peptide chosen was spTorA, the
reporter enzyme was Bla, the synthetic binding protein was an ERK2- or
pERK2-specific DARPin, and the antigen was ERK2. Phosphorylation status
of ERK2 was toggled by expression of the constitutively active upstream
kinase MEK1R4F, which doubly phosphorylates (yellow P circles) ERK2 in
the cytoplasm of living E. coli cells
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single round of survival-based enrichment using the PhLI-TRAP
assay, 10 putative hits were randomly chosen from selective plates
for characterization. Sequencing revealed that one of these was a
false positive, and that two of the remaining nine were isogenic
duplicates. To confirm that the greater resistance conferred by the
eight unique clones was due to mutations in pE59 and not else-
where in the plasmid, all isolated DARPin sequences were back-
cloned into the original low-copy vector and used to transform
wild-type MC4100 cells carrying the ERK2-Bla plasmid. Spot
plating of cells co-expressing the back-cloned genes along with
ERK2-Bla and MEK1R4F confirmed that all eight positive hits
conferred significantly greater Carb resistance to cells compared
to that conferred by parental pE59. Three of these in particular,
clones pEM1 (selected on 400 μg/mL Carb), pEM2 (selected on
300 μg/mL Carb), and pEM3 (selected on 400 μg/mL Carb),
showed very strong resistance phenotypes (Fig. 4a and Supple-
mentary Fig. 4) and were chosen for further analysis.

Next, we evaluated binding activity of the isolated clones by
indirect enzyme-linked immunosorbent analysis (ELISA) using
immobilized ERK2 and pERK2 as antigens. In accordance with
the drug resistance results, pEM1, pEM2, and pEM3 all exhibited
significantly higher binding activity against pERK2 compared to
pE59 with clone pEM1 showing the greatest improvement
(Fig. 4b). When the same clones were assayed for binding against
ERK2, all showed very low binding activity that was slightly

higher than pE59 (Fig. 4b). To quantify the affinity for the most
improved clone, pEM1, the equilibrium dissociation constant KD

was determined for binding to the ERK2 and pERK2 antigens by
kinetic surface plasmon resonance (SPR) measurements on a
Biacore instrument. Overall, we determined that the stronger
binding measured for pEM1 in spot plating and ELISA
experiments above resulted from a >five-fold improvement in
pERK2 affinity, to 87.1 nM, while the observed selectivity in these
assays stemmed from a >40-fold difference in binding affinity to
cognate pERK2 versus non-cognate ERK2 (Table 1 and
Supplementary Fig. 5). The apparent selectivities for both pE59
and pEM1 may be even higher because SPR signals for the non-
cognate ERK2 form were very low and thus led to an imprecise
estimation of KD. This could also explain in part the discrepancy
in the selectivity values for pE59 reported here and by Kummer
et al.30. Taken together, these results suggest that by performing
genetic selections in a MEK1R4F-expressing strain background,
the selectivity of the affinity-matured pE59 variants was not
compromised and remained strongly biased towards phospho-
modified ERK2.

Sequencing of the three hits revealed that a relatively small
number of amino acid changes (F67Y in pEM1, L7M and D60G
in pEM2, and L55V, N62K, and I83V in pEM3) is responsible for
the increased binding affinity. Collectively, the mutations
primarily mapped to the ankyrin repeat modules between the
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Fig. 2 Phenotypic selection of pERK2-specific DARPin binding. a Representative spot titer images and b survival curves for serially diluted E. coli MC4100
cells co-expressing TatABC along with the antigen-Bla reporter fusion (MBP-Bla, ERK2-Bla, or JNK2-Bla) and a Tat-targeted DARPin (spTorA-pE59 or
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available in the Source Data File
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N- and C-terminal capping repeats (Supplementary Table 1).
Interestingly, the significantly enhanced affinity of pEM1 arises
from a single mutation, F67Y, to a residue that directly contacts
the surface of pERK2 (Fig. 4c). For clones pEM2 and pEM3, most
of the mutations (L55, N62, D60, and I83) appear to be internal
to the DARPins and may not contact pERK2 directly (Fig. 4c),
although it is possible that these mutations alter the structure of
the clustered helices in a way that enhances contact with pERK.
In the case of pEM3, an additional L7M mutation in the N-
capping repeat might also explain the improved binding as this
residue is in position to interact with the surface of pERK2
(Fig. 4c).

Reprogramming the specificity and selectivity of pE59.
Encouraged by our success isolating pE59 variants with stronger
affinity to cognate pERK2, we next attempted to use our genetic
selection to redirect pE59 binding to nonphosphorylated ERK2.
Similar to the approach outlined above, an error-prone library of
pE59 sequences was generated and cloned just after the spTorA
signal peptide in the low-copy expression plasmid; however, the
gene encoding MEK1R4F was omitted. Following co-
transformation of wild-type MC4100 cells with the plasmid
library along with the ERK2-Bla plasmid, positive clones were
selected on moderate Carb concentrations (50 and 300 μg/mL)
from a starting library that contained ~105–106 members. At
these concentrations, we anticipated that outgrowth of individual
cells expressing the parental pE59 sequence would be inhibited,

thereby limiting outgrowth to only positive hits from the library.
Following one round of survival-based enrichment using the
PhLI-TRAP assay in the absence of MEK1R4F-mediated phos-
phorylation, seven putative hits were randomly chosen from
selective plates (EpEM1-EpEM6 selected on 50 μg/mL Carb and
EpEM7 on 300 μg/mL Carb; Supplementary Table 1) and sub-
jected to further characterization. Following the same sequencing
and back-transformation procedure described above, we deter-
mined that all of these hits were unique sequences that conferred
a true positive phenotype in the PhLI-TRAP assay. Specifically,
spot plating of cells co-expressing back-cloned genes along with
ERK2-Bla in the absence of MEK1R4F confirmed that all seven
hits conferred greater Carb resistance to cells compared to that
conferred by parental pE59 (Fig. 5a and Supplementary Fig. 6).
Two clones in particular, EpEM6 and EpEM7, stood out for their
high level of Carb resistance, which suggested that each had
acquired strong binding activity toward non-cognate ERK2.

To determine whether these newly evolved DARPin variants
retained parental binding activity to pERK2, we performed spot
plating analysis of cells co-expressing EpEM6 or EpEM7 along
with ERK2-Bla and MEK1R4F. Indeed, both variants conferred
strong resistance to cells expressing pERK2 (Fig. 5b), indicating
that reprogramming substrate specificity toward non-cognate
ERK2 resulted in the evolution of promiscuous variants that
bound both ERK2 forms. Interestingly, whereas EpEM6 behaved
similarly to pE59 in the presence of pERK2, EpEM7 conferred a
level of resistance that was on par with affinity-matured pEM1
(Fig. 5b). In light of this result, it is interesting to note that two of
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Fig. 3 Phenotypic selection of DARPins binding cognate antigens. Survival curves for serially diluted E. coli MC4100 cells co-expressing TatABC along with
ERK2-Bla and either: a Tat-targeted DARPins EpE82 (black squares) and EpE89 (gray squares) that recognize both ERK2 forms; or b Tat-targeted DARPins
E8 (black triangles) and E38 (gray triangles) that specifically recognize nonphosphorylated ERK2. Resistance of cells was evaluated in the presence (left) or
absence (right) of MEK1R4F kinase as indicated. Overnight cultures were serially diluted in liquid LB and plated on LB agar supplemented with Carb.
Maximal cell dilution that allowed growth is plotted versus Carb concentration. Resistance profiles for pERK2-specific DARPin pE59 are shown (gray
circles) for comparison. Source data for this figure is available in the Source Data File
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the three mutations in EpEM7, namely L6P and N62Y, are similar
to the L7M, D60G, and N62K mutations uncovered in affinity-
matured pEM2 and pEM3 (Supplementary Table 1), which might
explain the strengthened binding to pERK2 by EpEM7.

To further investigate the selectivity of these two clones,
binding to both ERK2 forms was quantified by kinetic SPR

measurements. In agreement with the resistance profiles seen
above, clones EpEM6 and EpEM7 both exhibited dramatically
enhanced affinity for non-cognate ERK2 compared to parental
pE59, with measured KD values in the 200–800 nM range (Table 1
and Supplementary Fig. 7). Because the affinity of EpEM6 for
pERK2 remained unchanged, the selectivity of this DARPin
variant was significantly relaxed compared to the pERK2-biased
pE59 from which it was derived (selectivity of ~1 fold versus ~8
fold, respectively). In contrast, clone EpEM7 retained high selec-
tivity for cognate pERK2 (~9 fold) due in large part to the
unexpected acquisition of stronger affinity for the pERK2 form
during the library selection process.

Discussion
In this study, we developed a genetic selection strategy called
PhLI-TRAP that enables direct intracellular detection of
phospho-specific interactions. At the heart of this assay is a
chimeric substrate protein that was created by fusing ERK2, a
member of the MAPK family and a model post-translationally
modified protein11, with the reporter enzyme TEM-1 Bla. To
validate the assay, E. coli cells were transformed with plasmids
encoding ERK2-Bla, MEK1R4F, a constitutively active mutant of
the upstream activating kinase that can be functionally expressed
in the cytoplasm of E. coli35, and different phospho-specific
DARPins that distinguished between the nonphosphorylated or
doubly phosphorylated forms of ERK230. Upon co-expression of
these three key components in E. coli, the PhLI-TRAP assay
reliably reported the specificity and selectivity of five different
DARPins. The utility of PhLI-TRAP was then confirmed by
implementing a high-throughput selection process that enabled:
(i) affinity maturation of the pE59 DARPin for its cognate pERK2
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Fig. 4 Isolation of DARPin variants with enhanced pERK2 affinity. a Survival
curves for serially diluted E. coli MC4100 cells co-expressing TatABC along
with ERK2-Bla and Tat-targeted DARPins pEM1 (light gray), pEM2 (dark
gray), and pEM3 (black). Resistance of cells was evaluated in the presence
(filled diamonds) or absence (empty diamonds) of MEK1R4F kinase.
Overnight cultures were serially diluted in liquid LB and plated on LB agar
supplemented with Carb. Maximal cell dilution that allowed growth is
plotted versus Carb concentration. Resistance profiles for pERK2-specific
DARPin pE59 are shown with (empty circles) and without (light gray x
marks) MEK1R4F for comparison. b ELISA binding activity for purified
DARPins pE59, pEM1, pEM2, and pEM3 against immobilized pERK2 (top)
or ERK2 (bottom). PBS served as a negative control. All data are the
average of three biological replicates and the error bars represent the
standard deviation (SD). c Location of mutations in DARPin variants pEM1,
pEM2, and pEM3 mapped onto the pE59-pERK2 co-crystal structure. The
structure was derived from PDB ID 3ZUV described in Kummer et al.30, and
the schematic was generated using PyMOL software. The DARPin is shown
in light red, pERK2 in light blue, the phosphorylated T185 and Y187 active
site residues of ERK2 in dark blue spheres, and the mutations found in helix
and loop secondary structures in red and green, respectively. Source data
for this figure is available in the Source Data File

Table 1 Affinity and selectivity of selected DARPins for
ERK2 and pERK2

DARPin KD (M), pERK2 KD (M), ERK2 Selectivity

pE59 453 × 10−9 >3.5 × 10−6 >7.7
pEM1 87.1 × 10−9 >3.5 × 10−6 >40
EpEM6 633 × 10−9 784 × 10−9 1.0
EpEM7 25.2 × 10−9 222 × 10−9 8.8
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antigen; and (ii) reprogramming of the pE59 DARPin to speci-
fically recognize non-cognate ERK2 antigen. Importantly, the
ability to uncover phospho-specific DARPin variants exhibiting
superior traits simply by demanding bacterial growth on high
concentrations of antibiotic, without the need for purification or
immobilization of the phosphoprotein target, ensures that our
approach is extremely straightforward, especially compared to
conventional methods such as animal immunization and phage
display23,25–27. For example, in vitro display methods such as
mRNA, phage, or ribosome display all require the additional steps
of immobilizing a purified antigen followed by biopanning, which
are more technically demanding and expensive compared to the
survival selection of bacterial cells. Moreover, the ability of our
approach to rapidly furnish genetically encoded tools for cell
biology is significant given the ever-increasing number of known
phosphorylation sites and the global phosphorylation changes
that are known to occur during disease4–8.

Our results unequivocally established PhLI-TRAP selection as
a viable route to engineering substantial affinity enhancement
towards both cognate and non-cognate antigens. In the latter
case, we isolated a clone, EpEM6, that acquired enhanced binding
affinity for a poor antigen (e.g. EpEM6) while retaining parental
binding activity to the cognate antigen, thereby transforming the
pERK2-biased DARPin pE59 into a promiscuous binder that now
recognized both ERK2 forms. This outcome was reminiscent of
results from numerous enzyme engineering studies using in vitro
screening techniques in which the evolution of variants is often

met with the acquisition of increased fitness towards the poor/
new function without impairment of the original function38–40.
As a result, laboratory evolved enzymes typically display a higher
degree of promiscuity compared to their parental counterparts.
Several groups have shown that this promiscuity can potentially
be avoided by implementing both positive selection for the
desired trait in combination with negative selection to partially if
not completely suppress the original or any other unwanted
activities40–42. In one notable example involving Cre recombi-
nase, the use of positive screening alone resulted in relaxation of
substrate specificity, whereas the combined use of positive and
negative screening resulted in switched specificity40. While not
directly demonstrated here, a genetic counterselection scheme
using PhLI-TRAP could be implemented to isolate DARPins with
exquisite selectivity. For example, a tightly controlled, inducible
promoter could be used to toggle the expression of the target-
modifying kinase such that bacterial growth on plates in the
presence of inducer could be used to select for library members
that bind to phospho-modified antigen after which counter-
selection of positively selected hits on plates lacking inducer could
be used to easily weed out clones that bind to unmodified antigen
(or vice versa). Indeed, introduction of the Ptac promoter
upstream of MEK1R4F enabled facile discrimination of DARPin
selectivity in the presence and absence of the inducer isopropyl β-
D-1-thiogalactopyranoside (IPTG) (Supplementary Fig. 8).
Another possible permutation of our selection strategy that could
be implemented in the future is the co-expression of free
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competitor antigen to minimize the possibility that clones having
a sequence-based expression advantage would outcompete other
binders having higher affinities and/or specificities.

Beyond the identification of PTM-directed binding proteins
and their subsequent engineering, we also envision other ways of
applying PhLI-TRAP in the future. These opportunities arise
from the linkage between bacterial cell resistance and three sys-
tem components: the binding protein, the post-translational
modifying enzyme(s), and the substrate protein. For example, one
could imagine using PhLI-TRAP for high-throughput selection
of synthetic libraries encoding one of these components to
reveal sequence determinants that govern the activity of the post-
translational modifying or that define the modified sites on
a target protein. It is also conceivable that the genetic
selection strategy could be reconfigured for other types of
PTMs, in particular those that have been functionally recon-
stituted in the cytoplasm of living E. coli cells, such as N-acet-
ylation43, glycosylation44–47, neddylation48, sumoylation49,50, and
ubiquitination51,52.

Methods
Strains and growth selection conditions. Wild-type E. coli strain MC4100 was
used for all growth selection experiments. MC4100 cells were co-transformed with
plasmid pDD322-TatABC::ERK2-Bla, which included the genes encoding E. coli
TatABC for increasing the copy number of Tat translocases and the gene encoding
the chimeric reporter construct ERK2-Bla, and either plasmid pDD18-spTorA-
RGS-6xHis-pE59 or pDD18-spTorA-RGS-6xHis-pE59::MEK1R4F which included
the gene encoding MEK1R4F. Plasmid pDD322-TatABC::ERK2-Bla was con-
structed by first PCR amplifying the gene encoding ERK2 and inserting the PCR-
amplified gene into plasmid pDD322-TatABC::α-syn(A53T)-Bla33 in place of the
gene encoding α-syn(A53T). Plasmid pDD18-spTorA-RGS-6xHis-pE59 was con-
structed by replacing the DNA encoding NAC32-FLAG in pDD18-ssTorA-
NAC32-FLAG33 with DNA encoding RGS-6xHis-pE59, which was generated by
PCR using plasmid pRDV-pE5930 as template. The resulting plasmid was further
modified by adding the gene encoding MEK1R4F to create pDD18-spTorA-RGS-
6xHis-pE59::MEK1R4F. To evaluate cytoplasmic co-expression of ERK2 and
MEK1R4F, we used plasmid pET-His6-ERK2-MEK1_R4F_coexpression, which was
a gift from Melanie Cobb (Addgene plasmid #39212). To evaluate other DARPins,
the gene encoding pE59 in each of these plasmids was replaced with PCR products
encoding the DARPins E8, E38, EpE82, or EpE89, which were PCR amplified using
plasmids pDST67-E8, pDST67-E38, pRDV-EpE82, and pRDV-EpE89 as template
DNA30. All primers used in the construction of these plasmids are listed in Sup-
plementary Table 2 and all plasmids generated in this study were confirmed by
DNA sequencing.

Following transformation, bacteria were grown overnight at 37 °C in Luria
Bertani (LB) medium supplemented with 25 μg/ml chloramphenicol (Cm) and 10
μg/ml tetracycline (Tet). The next day, antibiotic resistance of bacteria was
evaluated by spot plating 5 ml of serially diluted overnight cells that had been
normalized in fresh LB to OD600= 2.5 onto LB agar plates supplemented with 1.0%
arabinose, 25 μg/ml Cm, 25 μg/ml Tet, and varying amounts of Carb (0–600 μg/
ml). Plated bacteria were incubated at 30 °C for 48 h. E. coli strain XL1-Blue was
used for cytoplasmic expression of DARPins from pDST67-based plasmids30.
Cultures were grown in LB medium supplemented with 50 μg/ml ampicillin
(Amp), and protein expression was induced with 1 mM isopropyl β-D-1-
thiogalactopyranoside (IPTG). For testing the selection/counterselection strategy
based on IPTG-inducible MEK1R4F expression, E. coli strain MC4100(DE3) cells
were cotransformed with plasmids pDD322-TatABC::ERK2-Bla, pDD18-spTorA-
RGS-6xHis-pE59, and pEXT22-MEK1R4F. The latter plasmid was constructed by
PCR amplifying the gene encoding MEK1R4F and ligating the PCR product into
pEXT22. Strain BL21(DE3) was used for cytoplasmic expression of ERK2 and
pERK2 from pLK1_ERK2 and pLK1_ERK2+MEK1R4F plasmids, which
introduced N-terminal Avi tags for biotinylation in vivo using pBirAcm (Avidity)30

and C-terminal 6 × -His tags for affinity purification and immunodetection. The
Avi tags were used for avidin resin purification, after which 6 × -His tags were used
for Ni-column purification to remove unbound biotin and enhance purity. Cultures
were grown in LB medium supplemented with 50 μg/ml Amp, and when OD600

reached ~0.3, IPTG (0.4 mM) and biotin (5 μM) were added for protein induction
and biotinylation, respectively.

Library construction and selection. A random mutagenesis library was generated
from pE59 using the Genemorph II random mutagenesis kit (Stratagene). PCR was
performed using 1 ng pDD18-spTorA-RGS-His-pE59::MEK1R4F as template in
each reaction. The resulting PCR products were digested by XbaI and SalI, purified
by gel electrophoresis, and cloned into pDD18-spTorA-RGS-His-pE59::MEK1R4F

that had been digested with the same enzymes. The library was transformed into

electrocompetent DH5α cells and selected on LB agar containing Cm to recover
clones containing the plasmid. The library size and error rate were determined to
be 2 × 106 members and ~3 mutations per gene, respectively. The plasmid library
was miniprepped from DH5α and used to transform electrocompetent MC4100
cells already harboring the pDD322-TatABC::ERK2-Bla plasmid. Transformed
cells were incubated at 37 °C for 1 h without any antibiotics and then were sub-
cultured into fresh LB containing 25 µg/ml Cm and 10 µg/ml Tet to ensure that
cells contained both plasmids. After ~16 h, cells were spun down and normalized in
fresh LB to OD600= 2.5 followed by direct plating of 100 µl of diluted cells (to the
dilution factor previously determined by spot plating) onto LB agar supplemented
with 1% arabinose and 300–500 μg/ml Carb. Hits were randomly picked after
incubation at 30 °C for ~48–72 h. An identical selection of cells carrying the
pDD18-spTorA-RGS-6xHis-pE59 or spTorA-RGS-6xHis-pE59::MEK1R4F (either
with or without co-expression of MEK1R4F) was performed as negative control.
Randomly chosen positive clones were screened by spot plating to confirm Carb
resistance and then sequenced to determine the identity of any mutation(s). After
sequencing, the genes encoding the DARPin hits were PCR amplified, back-cloned
into pDD18 with and without MEK1R4F, and used for spot plating analysis to
confirm binding affinity against pERK2 and ERK2.

Subcellular fractionation and western blot analysis. To prepare subcellular
fractions for western blot analysis, 50 ml of induced culture was harvested and
pelleted after 20 h incubation in 25 °C. Cells were resuspended in 1 ml subcellular
fractionation buffer (30 mM Tris–HCl, 1 mM ethylenediaminetetraacetic acid
(EDTA), 0.6 M sucrose) and then incubated for 10 min at room temperature. After
adding 250 μl of 5 mM MgSO4, cells were incubated for 10 min on ice. Cells were
spun down, and the supernatant was taken as the periplasmic fraction. The pellet
was resuspended in 250 μl phosphate buffered saline (PBS) and sonicated on ice.
Following centrifugation at 18,500 × g for 20 min at 4 °C, the second supernatant
was taken as the cytoplasmic soluble fraction, and the pellet was the insoluble
fraction. To prepare samples for cell lysate analysis, 25–50 ml of induced culture
was pelleted and resuspended in 500 μl Bugbuster Mastermix. Samples were rotated
at room temperature and then spun down at 18,500 × g for 20 min at 4 °C. The
supernatant was taken as the soluble cytoplasmic fraction. Proteins were separated
using Precise Tris-HEPES 4–20% SDS-polyacrylamide gels (Thermo Scientific),
and western blotting was performed according to standard protocols. Briefly,
proteins were transferred onto polyvinylidene fluoride (PVDF) membranes, and
membranes were probed with the following antibodies: rabbit anti-p44/42 MAPK
(Erk1/2) antibody (Cell Signaling; cat # 4695 S) at 1/2500 dilution to detect ERK2-
Bla fusion; rabbit anti-p-p44/42 MAPK (Erk1/2) (Cell Signaling; cat # 9101 S) at 1/
2500 dilution to detect pERK2-Bla fusion; mouse anti-RGS-4xHis (Qiagen; cat #
34610) at 1/2500 dilution to detect DARPins; and rabbit anti-GroEL (Abcam; cat #
ab90522) at 1/30,000 dilution to detect GroEL, which served as a fractionation
marker.

Protein purification. For DARPin purification, bacterial cells were harvested by
centrifugation and the resulting cell pellets were resuspended in binding buffer (20
mM sodium phosphate, 500 mM NaCl, 20 mM imidazole, pH 7.4). The cell sus-
pensions were then passed five times through an EmulsiFlex™-C5 cell homogenizer
(Avestin; 15,000 psi/4 °C) and centrifuged at 15,000 × g for 30 min at 4 °C. The
clarified lysate was filtered through a 0.2-μm-syringe filter prior to sample loading.
The sample was initially loaded through a 1-ml Ni-resin (GE Healthcare). The
column was then washed with buffer containing 20 mM sodium phosphate, 500
mM NaCl, 60 mM imidazole, pH 7.4. The captured protein was eluted with buffer
containing 20 mM sodium phosphate, 500 mM NaCl, 250 mM imidazole, pH 7.4.
Final purity of proteins was confirmed by SDS-polyacrylamide gel electrophoresis
(PAGE) and Coomassie staining. Purity of all proteins was typically >95%.

For biotinylated ERK2 and pERK2 purification, bacterial cell pellets were
harvested by centrifugation, pelleted, and resuspended in PBS (pH 7.4) with 1 mM
DTT and 0.05% Tween-20. The cell suspensions were then homogenized as above.
The soluble lysate containing biotinylated ERK2 and pERK2 was first purified using
avidin agarose (Thermo Scientific). The lysates were then loaded onto the packed-
avidin agarose column by gravity flow. The column was washed twice with PBS
buffer, after which purified fusion protein was eluted using PBS buffer containing 2
mM biotin. The eluents were passed over a Ni-column to further enhance their
purity and to remove unconjugated biotin, and the proteins were eluted with buffer
containing 20 mM sodium phosphate, 500 mM NaCl, 250 mM imidazole, pH 7.4.
Biotinylated ERK2 and pERK2 were analyzed by SDS-PAGE followed by
Coomassie staining to confirm purity, which was typically >95% for both proteins.

ELISA. Biotinylated ERK2 and pERK2 (100 nM) were immobilized on neutravidin-
coated ELISA plates for 2 h at 4 °C, and then washed twice with PBS (pH 7.4) with
1 mM DTT and 0.05% Tween-20. Next, the plates were blocked with PBS (pH 7.4)
with 1 mM DTT, 0.05% Tween-20, and 1% (w/v) BSA. All subsequent ELISA steps
were performed at 4 °C in PBS (pH 7.4) with 1 mM DTT and 0.05% Tween-20. To
measure binding activity, different concentrations of purified DARPins (pEM1,
pEM2, pEM3, and pE59) ranging from 0 to 200 nM were applied to wells with or
without ERK2 or pERK2 for 1 h at 4 °C. DARPin binding was detected by mouse
anti-RGS-4xHis antibody (Qiagen; cat # 34610) at 1/2500 dilution followed by a
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goat anti-mouse IgG-HRP conjugate (Abcam; ab6789) at 1/5000 dilution, both in
PBS (pH 7.4) with 0.05% Tween-20. After 1 h of incubation at room temperature,
plates were washed and then incubated with SigmaFast OPD HRP substrate
(Sigma) for 30 min in the dark. The reaction was quenched with 3M H2SO4, and
the absorbance of the wells was measured at 492 nm.

SPR. Kinetic SPR measurements were made using a Biacore 3000 instrument (GE
Healthcare) for DARPins pE59, pEM1, EpEM6, and EpEM7. The running buffer
was 50 mM Tris (pH 7.4), 150 mM NaCl, 0.05 mM EDTA, and 0.005% Tween-20.
Biotinylated ERK2 or pERK2 was immobilized on a streptavidin SA chip (GE
Healthcare) to ~500 response units (RU). Interactions were determined by
injecting varying concentrations of each DARPin at a flow rate of 30 μL/min for 5
min, after which off-rate measurements were made by flowing running buffer for
50 min. The signal of an uncoated reference cell was subtracted from the sensor-
grams. Zero-concentration samples (Tris buffer) were also included in SPR
experiments as a baseline for double referencing. Sensorgram data were evaluated
by fitting the equilibrium binding responses to obtain affinity values using BIAe-
valuation software (GE Healthcare) and Prism software.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included in this article (and its
supplementary information) or are available from the corresponding authors on
reasonable request. The source data underlying Figs. 2a, 2b, 3, 4a, 4b and 5a are provided
as a Source Data file.
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