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Abstract

Designed ankyrin repeat proteins (DARPins) can recognize targets with
specificities and affinities that equal or surpass those of antibodies, but be-
cause of their robustness and extreme stability, they allow a multitude of more
advanced formats and applications. This review highlights recent advances
in DARPin design, illustrates their properties, and gives some examples of
their use. In research, they have been established as intracellular, real-time
sensors of protein conformations and as crystallization chaperones. For fu-
ture therapies, DARPins have been developed by advanced, structure-based
protein engineering to selectively induce apoptosis in tumors by uncou-
pling surface receptors from their signaling cascades. They have also been
used successfully for retargeting viruses. In ongoing clinical trials, DARPins
have shown good safety and efficacy in macular degeneration diseases. These
developments all ultimately exploit the high stability, solubility, and aggre-
gation resistance of these molecules, permitting a wide range of conjugates
and fusions to be produced and purified.
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INTRODUCTION

Motivation

Repeat proteins were devised as a new paradigm for creating binding proteins (1) using technolo-
gies that had all been established initially for recombinant antibodies. These technologies had
been developed to such a level that they became, ironically, independent of the antibody molecule
itself: Recombinant antibodies could be expressed functionally in Escherichia coli (2, 3)—a basis
of all convenient engineering. Natural and semisynthetic libraries (4) as well as fully synthetic li-
braries (5) could be created and selected by phage display (4), ribosome display (6), and many other
techniques. Because the work flow of ribosome display with its intrinsic polymerase chain reaction
(PCR) step can be combined easily with random mutagenesis (i.e., enabling true directed evolution
and affinity maturation, as opposed to mere selection) (7), even the somatic hypermutation had
hence been replicated in the laboratory. The antibody molecule had thus become dispensable.

It therefore became possible to address the shortcomings of recombinant antibodies by creating
other binding molecules. For most antibody engineering, and for most fusion proteins, fragments
of antibodies such as Fab and scFv are used, but these show a high aggregation tendency, especially
when linked together or when used under reducing conditions as intrabodies (8). For therapy,
therefore, most recombinant antibody fragments are converted back to the IgG format (9). A novel
scaffold was thus needed that would particularly address protein stability and facile expression and
could thus widely open the application space.

Properties of Repeat Proteins

A suitable scaffold will have to replicate the virtues of antibodies and address their shortcomings.
Repeat proteins appeared very attractive as a choice for a general binding protein. They are com-
posed of repeat modules that stack on each other to create a compact folded domain, usually with
an elongated shape (10), and use variable surface residues to create an extended target interac-
tion interface. The conserved interfaces between the repeat units allow individual repeats to be
exchanged, deleted, or inserted without destroying the tertiary structure of the domain.

After engineering work on repeat protein libraries had been well under way (1, 11, 12), Pancer
and colleagues (13) reported the surprising discovery that jawless vertebrates use an adaptive im-
mune system composed of leucine-rich repeat (LRR) proteins. Researchers had known already that
most vertebrates use LRR proteins as part of their innate immune response—the family of Toll-like
receptors (14)—and that LRR proteins serve similar roles in plants and insects (15–17). However,
the finding that Agnatha (Greek: no jaws) have converted these molecules into an adaptive immune
response, i.e., into a repertoire from which a specific binding protein can be selected, was a rather
unexpected validation of the concept of using repeat proteins in an antibody-like manner.

Several repeat proteins have been subjected to protein engineering (reviewed in References 18
and 19). However, this review concentrates on ankyrin repeat proteins, as they have progressed
the furthest toward biomedical applications.

Properties of Designed Ankyrin Repeat Proteins (DARPins)
and the Design of a Library

Ankyrin repeat proteins (20, 21) are built from tightly packed repeats of, usually, 33 amino acid
residues. Each repeat forms a structural unit consisting of a β-turn followed by two antiparallel
α-helices (Figure 1), and up to 29 consecutive repeats can be found in a single protein (22). Yet
ankyrin repeat domains usually consist of four to six repeats, leading to a right-handed solenoid
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Figure 1
DARPins and LoopDARPins are depicted with different aspects of their randomized surface highlighted. DARPins consist of an
N-capping repeat ( green ribbon), several internal repeats whose number can be freely chosen (three shown here) (dark blue ribbon), and a
C-capping repeat (cyan ribbon). (a,b,c) Classic DARPin library design, with residues in magenta randomized in the original design (11)
and additional residues randomized in the caps ( green) (31) ( J. Schilling, J. Schoeppe, S. Hansen, J. Schaefer & A. Plückthun,
unpublished data). Views in panels a and b are rotated by 90◦ about the y-axis, and the molecular surface is shown in panel c (in the same
orientation as in panel b). (d,e,f ) LoopDARPins (31) are characterized by an inserted protruding loop, with additional randomized
residues shown in blue. Note that in panel e, only the randomized loop residues are shown with their side chains, whereas in panel d,
side chains of all randomized residues are depicted. In panel f, the corresponding surfaces are colored accordingly. Abbreviation:
DARPin, designed ankyrin repeat protein.

structure with a continuous hydrophobic core and a large, solvent-accessible surface (10, 23). The
binding surface thereby becomes groove-like.

We chose a consensus strategy (24) to arrive at repeats that are self-compatible (and can thus
be added, inserted, and shuffled) and to generate molecules with high stability and expression
rate. The underlying assumption is that residues important for maintaining the fold will be more
conserved and thus show up prominently in an alignment. By using an iterative process of sequence
and structural analyses (11), a consensus framework was built and surface residues were identified
that might potentially interact with the target—based on analogy of complexes of natural ankyrin
repeat proteins with their targets. These residues were randomized, avoiding the residues Cys (to
eliminate disulfide formation), Pro, and Gly (as some of the residues are located in a helix). This
restriction was achieved by using trinucleotide building blocks during library generation (25).

The designed ankyrin repeat protein (DARPin) library thus comprises fixed and variable po-
sitions. The fixed positions reflect structurally important framework positions, whereas the six
variable positions per repeat module reflect nonconserved, surface-exposed residues that can be
potentially engaged in interactions with the target. The theoretical diversities of the DARPin
libraries are 5.2 × 1015 or 3.8 × 1023 for two-module or three-module binders, respectively, and
the actual sizes of the libraries are equal to the number of different molecules present. They can
be estimated as 1012 in ribosome display (26) and 1010 in phage display (27).

When designing the consensus ankyrin repeats, a challenge arose regarding the first repeat
(N-capping repeat or N-cap) and the last repeat (C-capping repeat or C-cap) flanking the binding
modules discussed above. These should present a hydrophilic surface to the outside. Indeed, we
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have observed experimentally that the presence of these caps is essential for DARPins to fold in
E. coli (28). In the original design, both were taken from a natural protein (11). More recently,
this C-cap was redesigned to make it more similar to the consensus, and the new C-cap is indeed
much more resistant to thermally and denaturant-induced unfolding (28). Crystallography (29)
and nuclear magnetic resonance spectroscopy experiments (30) have shown that this stabilization
is due to better packing. Importantly, this robust structure has now allowed us to introduce
randomized residues in the cap as well, thereby creating a larger interaction surface to bind to
even more possible epitopes (31) (Figure 1a–c).

More recently, the DARPin architectural concept has been expanded (31). The proteins’ con-
cave shape, rigidity, and incompletely randomized binding surface may limit the epitopes that
can be targeted by this extremely stable scaffold. Therefore, a continuous convex paratope, sim-
ilar to the long CDR-H3 found in many antibodies, was introduced into the DARPin scaffold
(Figure 1d–f ). To retain the beneficial biophysical properties of DARPins, the stem of the loop
was kept constant to make it compatible with the neighboring repeats. Biophysical characteriza-
tions have indeed shown that the introduction of an elongated loop through consensus design did
not decrease the stability of the scaffold. Using these design principles, a library of LoopDARPins
was created, a next generation of DARPins with extended epitope-binding properties. An X-ray
structure of a LoopDARPin validated the design (31). With this LoopDARPin library, binders
with an affinity of 30 pM could be isolated with only a single round of ribosome display directly
from the original library (31), an enrichment that so far had not been described for any scaffold
or any selection technology.

Most DARPins show high thermodynamic stability against unfolding induced by heat or de-
naturants (32, 33) and can be brought to very high protein concentrations without aggregating.
Moreover, they can be expressed at very high yield in soluble form in the cytoplasm of E. coli,
constituting up to 30% of total cellular protein (up to 200 mg per liter of shake-flask culture).
Expression in fermenters can consequently be brought to multigram quantities per liter of culture
(http://www.molecularpartners.com).

Purification is thus straightforward, and for laboratory use, immobilized metal ion chromatog-
raphy purification is the standard method used. Additional purification steps are of course required
when the protein is derivatized [e.g., with polyethylene glycol (PEG) or fluorescent dyes]. For an-
imal experiments, in which still higher purity is needed and the absence of endotoxins needs to be
secured, additional washing steps and endotoxin chromatography are required and readily feasible
(34). Altogether, the good manufacturing practice (GMP) production of highly pure DARPins for
clinical-grade material is straightforward (http://www.molecularpartners.com).

Full Consensus DARPins

A series of full consensus DARPins can be obtained by converting the randomized positions also
to consensus residues [using structural considerations in some cases where the choice is not clear
(35)]. These molecules implicitly constitute the origin of library diversification and might be
expected to have a very high stability, and indeed the experimental results support this notion.
When starting from such a point of extremely high stability to create a library, many changes in the
protein necessary for function but detrimental to stability can be tolerated, even in the conserved
positions, and the outcome is usually still a very well-behaved protein (11, 33, 35, 36).

The full consensus DARPins express very well in E. coli as soluble monomers, their stability
increases with length, and those with more than three internal repeats are resistant to denatura-
tion by boiling or guanidine hydrochloride. Full denaturation requires heating in 5 M guanidine
hydrochloride (35). Hydrogen/deuterium exchange experiments of DARPins with three internal
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repeats indicate that some amide protons require more than a year to exchange at 37◦C, high-
lighting the extraordinary stability of the proteins (30).

Selection Technologies for DARPin Libraries

DARPins appear to fold well under most conditions, and binding molecules can be selected from
synthetic DARPin libraries with most display or selection methods. Results from ribosome display,
phage display, and yeast display are summarized.

Ribosome display is a potent in vitro method to select and evolve proteins or peptides from a
naive library with very high diversity to bind to any chosen target of interest (6, 7, 37, 38). A key
feature of ribosome display is that, in contradistinction to most other selection technologies (26),
it incorporates PCR into the procedure and thus allows a convenient incorporation of a diversifi-
cation (randomization) step using a variety of error-prone procedures. Ribosome display thereby
allows refinement and affinity maturation not only of defined binders but also of the whole pool
during selection from a complex library, if desired (39–42). DARPin binders are apparently en-
riched somewhat faster than binders from a comparable scFv library in ribosome display selections
(38, 43)—a finding that can be explained, for instance, by the DARPins’ good folding behavior in
cell-free translation and the fact that their rigid fold is less prone to instability introduced by mu-
tations (if affinity maturation is applied). More recently, ribosome display has been automated to
allow the parallel selection against 94 targets simultaneously ( J.V. Schaefer, O. Scholz, T. Looser,
T. Reinberg, S. Furler, M. Göransson & A. Plückthun, unpublished experiments).

Using ribosome display, DARPins have been evolved to bind various targets with affinities
all the way down to dissociation constants (Kd) in the picomolar range (32, 41, 42, 44–49). This
relies on designing efficient, off-rate selections, and the theoretical considerations were recently
formulated (50).

Phage display can be of interest when selecting binders against targets on the surface of whole
cells (whole-cell panning) (51). Because DARPins fold very fast in the cytoplasm (35), an initial
problem arose: The display of DARPins using standard phage display vectors was unexpectedly
low. In filamentous phage display, the protein of interest (i.e., the DARPin) is usually fused to
the phage minor coat protein p3. This fusion protein is first produced as a membrane-bound
intermediate by the E. coli Sec machinery: The major part is secreted to the periplasm, whereas
the C-terminal helix of p3 still remains attached to the inner membrane before the whole fusion
protein is taken up by the coat of the extruding phage.

Because DARPins appear to fold before they can be transported across the membrane via
the posttranslational Sec system—the normal way of secreting E. coli proteins—they must be
secreted via the signal recognition particle (SRP)-dependent system. This system is essentially
cotranslational (52, 53). Using phagemids with SRP-dependent signal sequences, display rates of
DARPins are just as high as, for example, scFv fragments with conventional Sec signal sequences.
Thus, SRP phage display selection of DARPins leads to enrichment just as fast as for scFv fragments
using conventional Sec-dependent phages (54). After constructing a diverse, synthetic DARPin
SRP-phage library, binders with subnanomolar dissociation constants could be isolated from the
phage display library without affinity maturation for a variety of targets (27).

For completeness, it should be mentioned that E. coli also has a third transport system, the twin
arginine transport (Tat) system. However, attempts to achieve functional display of p3 fusions
via the Tat route have proven unsuccessful (55–57), as the full-length p3 protein may itself be
incompatible with the Tat system. Still, a truncated version of p3 can support Tat-mediated
phage display (58).

More recently, yeast display (59) has also been used for DARPin selection. DARPins are dis-
played at rates equal to the highest display levels reported for any protein on yeast, probably because
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they are well compatible with the yeast quality-control system of the endoplasmic reticulum (M.
Schütz, S. de Piciotto, K.D. Wittrup & A. Plückthun, unpublished experiments). Yeast display, al-
though limited to smaller libraries, can be used to efficiently select clones by fluorescence-activated
cell sorting (FACS) for particular binding, selectivity, or fluorescent properties. The possibility
of gating in FACS allows a fine-tuning of selections, thereby complementing the other display
methods.

Finally, DARPins have also been selected using protein fragment complementation (bringing
the two halves of dihydrofolate reductase together as a function of target recognition) (60). This
is a cytoplasmic selection system, illustrating the robustness of the DARPin scaffold.

APPLICATIONS OF DARPins

DARPins in Biochemical Research

Investigation of protein regulation, i.e., inhibition and activation inside living cells, is fundamen-
tal to our understanding of how proteins are influenced by their upstream regulators. Because
DARPins can be expressed in a functional form inside the cell, they form a good basis for creating
biosensors. As a proof of principle, DARPins were selected by ribosome display that specifically
bind to the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase (ERK)
in either its nonphosphorylated (inactive) or doubly phosphorylated (active, p-ERK) form (61)
(Figure 2). They do not bind to other kinases tested. Crystal structures of complexes with two
DARPins, each specific for either ERK or p-ERK, were obtained (Figure 2a,b). Using biolumines-
cence resonance energy transfer, the specificity inside the cell was confirmed. In a related series
of experiments, DARPins were developed as selective inhibitors of c-Jun N-terminal kinase-1
( JNK1) or JNK2 (62).

The two DARPins (specific for ERK or p-ERK) bind to essentially the same region of the
kinase but recognize the conformational change within the activation loop and an adjacent area,
which is the key structural difference that occurs upon kinase activation. In a follow-up study,
the DARPin specific for p-ERK was derivatized with a solvatochromic merocyanine dye, whose
fluorescence increases in a more hydrophobic environment, i.e., upon binding to its target (63)
(Figure 2c,d). The biosensor specifically responded to p-ERK, recognized by its conformation,
but did not react to ERK or other closely related MAPKs tested. Activated, endogenous ERK
could thus be selectively visualized in mouse embryo fibroblasts, revealing greater activation in
the nucleus, perinuclear regions, and especially the nucleoli (63). Such conformation-sensitive
biosensors will be useful tools to study many biological processes in real space and real time.

Because DARPins are very rigid molecules, they would be expected to crystallize readily with
their respective targets. Many experimental results confirm this (for reviews, see References 47, 64,
and 65). The facile crystal formation has greatly accelerated the process of engineering DARPins
for specialized purposes, as the structural information derived from X-ray crystallography is crucial
to studying the molecular interactions in atomic detail.

Whether the cocrystallization with a DARPin would routinely allow crystal formation of pro-
teins that otherwise do not crystallize (e.g., because they may contain flexible surface loops) will
depend on whether DARPins can dominate crystal packing. Studies are under way to generate
DARPins that are further optimized for this purpose, e.g., by designing rigid domain fusions to
other well-crystallizing domains. The results obtained so far seem to validate this concept (A.
Honegger, Y. Wu, A. Batyuk & A. Plückthun, unpublished experiments). Furthermore, rigid
multidomain DARPins also hold promise for helping to solve the crystallographic phase problem
by using molecular replacement with such rigid DARPin fusions.
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Figure 2
Development of an intracellular fluorescent sensor specific for detecting the active conformation of the kinase ERK (63). (a) Structure
of DARPin E40 ( pink) in complex with nonphosphorylated ERK (61). (b) Structure of DARPin pE59 ( green) in complex with
phosphorylated, active p-ERK (61). The DARPins recognize the activation loop, the only structural feature significantly different
between the kinase forms. They also make contact with the MAPK insertion (blue and yellow for panels a and b, respectively), explaining
why they are highly specific for ERK. (c) Ribbon structure of p-ERK binding DARPin pE59 (as in panel b). The area contacting p-ERK
is shown in green. Residues at the edge of this area ( pink or red, numbered ) were individually changed to cysteine and derivatized with
the solvatochromic dye Mero 87 shown in panel d. Coupling at Cys 123 (red ) resulted in the best sensor. Once the DARPin–Mero 87
conjugate binds to p-ERK, the fluorescence intensity increases several-fold. (e) The sensor was microinjected into live NIH 3T3 mouse
embryo fibroblasts stably expressing YPet, a derivative of yellow fluorescent protein. Ratiometric imaging (to control for cell thickness
and uneven illumination) shows an increased emission ratio (sensor over YPet) in the nucleus and especially the nucleolus. This
indicates the location of active p-ERK in a living cell. As expected, the inhibitor U0126 (targeting the upstream kinase MEK1/2)
strongly reduces this activation of ERK. Abbreviations: DARPin, designed ankyrin repeat protein; ERK, extracellular signal-regulated
kinase; MAPK, mitogen-activated protein kinase; MEK, MAPK/ERK kinase; p-ERK, phosphorylated ERK; YPet, yellow fluorescent
protein for energy transfer. Reprinted from Reference 61 with permission from the US National Academy of Sciences and from
Reference 63 with permission from Elsevier.

DARPins in Diagnostics

Diagnostics is still a stronghold of antibodies derived from immunized mice. This is despite the
fact that, for most diagnostic purposes, there is no need for the Fc part, as typically only the
binding site is required.

Because DARPins are very robust and the molecular format can be freely chosen, one can
create a wide series of fusion proteins and conjugates. Thus, DARPins are interesting binders for
developing new diagnostic detection systems, and they seem well poised to replace antibodies in
clinical assays. An important diagnostic application is quantitative immunohistochemistry. As a
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proof of principle, a DARPin specific for human epidermal growth factor receptor 2 (HER2) with
picomolar affinity was compared to a US Food and Drug Administration (FDA)-approved rabbit
monoclonal antibody in paraffin-embedded tissue sections in tissue microarrays (66). The HER2
gene amplification status is an important criterion to determine the optimal therapy in breast
cancer. As an external reference, the HER2 amplification status was determined by fluorescence
in situ hybridization. The DARPin detected a positive HER2 amplification status with similar
sensitivity but significantly higher specificity than the FDA-approved antibody (66). Affinity was
found to be crucial. Nonetheless, because the DARPins investigated have a picomolar Kd, it was
more advantageous to use them as monovalent molecules than to increase avidity even further
by making multivalent constructs—presumably because the monomers deliver more label per
epitope, which is then enzymatically detected. Therefore, DARPins can have the desired specificity
characteristics for diagnostic pathology.

DARPins in Tumor Targeting: Effects of Size and Affinity

Researchers have generally assumed that, to be useful in therapeutic applications, the half-life of
nonantibody proteins has to be increased to approach that of IgG or serum albumin. Both of these
long-lived molecules are equipped with a special recycling mechanism (67) that prevents their
degradation by the reticulo-endothelial system. They exploit binding to the FcRn receptor, which
recycles them back to the plasma membrane. Consequently, these properties can be transferred
to the protein of interest by fusing them to the Fc part or albumin. However, this occurs at a
cost: The fusion protein must then be produced in a eukaryotic host because of the disulfide-rich
nature of either fusion partner.

Other approaches to extend half-life are to chemically couple the bacterially expressed DARPin
with serum albumin (68) or to achieve the same by using binding proteins, by fusing the targeting
DARPin to another DARPin that binds to serum albumin (http://www.molecularpartners.com)
or the Fc part of antibodies. Serum half-life can also be extended by attaching PEG, which can
be conveniently done site-specifically at a single engineered cysteine or by using bioorthogonal
click chemistry (69) (see below), thereby leaving cysteine as another handle for coupling, e.g.,
to a small-molecule toxin, radiometal chelator, or fluorescent dye. For a PEG molecule with a
nominal molecular weight (MW) of 20 kDa, the hydrodynamic properties correspond to a MW
of about 250 to 350 kDa (70, 71), thus ranging beyond the size limit that can be filtered by the
kidney—renal clearance being the major mechanism of short serum half-life.

But is a molecule with a long half-life always the best in vivo format? Using DARPins, the
influence of affinity and size on the efficiency of targeting was systematically investigated. Point
mutants of a DARPin binder to HER2 spanning affinities from 280 nM to 90 pM (different stages
from directed evolution) (41, 45) were compared in unmodified form (MW 15 to 18 kDa) and
PEGylated form [hydrodynamic sizes of about 250 to 350 kDa (70, 71)]. Two distinct parameter
regions for efficient tumor accumulation were found.

The first parameter region is dominated by affinity: Unmodified DARPins (i.e., DARPins with
a small hydrodynamic size) accumulate rather efficiently at the tumor site but do so directly propor-
tional to affinity. This high accumulation for the smallest molecules might be at first unexpected. A
value of 8% injected dose/g tissue (ID/g) was reached after 24 h for a 90-pM binder in an SK-OV-3
subcutaneous mouse xenograft model. No evidence for a barrier effect—the empirical observation
that macromolecules often accumulate only at the outside of the tumor—was observed (72). The
small DARPins were cleared from the blood extremely rapidly, such that very high tumor to blood
ratios (60:1) were measured 24 h after injection. A lower accumulation in the tumor was seen for
bivalent DARPins (measured avidity of 10 pM on cells) than for their monovalent counterparts
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(which already had a Kd of approximately 90 pM), suggesting that smaller size is more important for
tumor accumulation than very high avidity. When fusing a nonbinding DARPin to the anti-HER2
DARPin as a control (Kd ≈ 90 pM), the same lowered uptake was observed as with the bivalent
DARPin, pointing to a size effect (as the bivalent binding on cells had been verified). This lower
accumulation is consistent with similar numbers measured for antibody scFv fragments in the
same tumor model (73, 74). The scFvs have MWs similar to the two-DARPin constructs. Thus, a
very small MW (smaller than scFv) can lead to efficient targeting, provided affinity is picomolar.

The second parameter region of high tumor accumulation is given by the PEGylated DARPins.
They accumulated more slowly and to an even higher extent (13.5% ID/g). As might be expected
from their larger size, they were hardly cleared through the kidney, and their blood persistence was
much longer, leading to smaller tumor to blood ratios. Interestingly, the importance of affinity
was diminished in this format, with the DARPin of 90 pM Kd not showing a great advantage
over the one with 1 nM Kd (72). Nonetheless, the low affinity construct with a Kd of 280 nM
showed significantly lower uptake, excluding passive accumulation by the enhanced permeability
and retention effect (75) as a major contributor.

It should be stressed that this finding of two MW optima is fully consistent with the elegant
modeling studies of Wittrup and colleagues (76, 77) which all have independently and concurrently
come to very similar conclusions. To rationalize these findings, a very pronounced dependence of
extravasation on MW can be proposed. Thus, if extravasation is even more dependent on lower
MW than the renal filtration threshold, then a molecule of intermediate MW would be filtered
through the kidney and clear very rapidly but would still not extravasate very well. Importantly,
a molecule of small MW needs to bind to its cell-surface receptor on the tumor very tightly, or
it will be washed out rapidly. This affinity requirement is not as strong for very large, PEGylated
molecules, which reside in the serum for much longer times. In contrast, medium-sized molecules
(such as scFv fragments) are still being cleared through the kidney, without reaching the tumor
fast enough, because of their slower extravasation.

From a series of elegant studies on quantifying tumor accumulation of mono- and multivalent
scFv fragments, Adams et al. (78) have proposed that a very high affinity might be disadvantageous
for efficient tumor targeting. It should be noted, however, that in these investigations, iodine was
used as a label, and this is removed by dehalogenases upon internalization. Thus, high affinity (or
high avidity) leading to more internalization will lead to less remaining iodine label in the tumor
(79). In contrast, the DARPin study by Zahnd et al. (72) mentioned above used a residualizing Tc
label (80), which will not be removed upon internalization and will thus be counted and imaged,
no matter whether the protein has become internalized or whether it remains on the surface.
Thus, when considering all protein molecules that have ever arrived at the tumor site, no decrease
in uptake is observed with very high affinity, and no barrier effect is observed. In contrast, if one
were to count only those molecules that have remained on the surface, there would indeed be a
decrease with very high affinity, as a larger proportion of protein gets internalized and thus loses
its (iodine) label. It is thus very important to consider the label with which these measurements
are carried out before generalizing statements about tumor uptake and affinity.

Engineering Naked DARPins for Selective Tumor Killing

Human epidermal growth factor receptor-2 (HER2/ErbB2) is a receptor tyrosine kinase without
a known natural ligand, directly linked to the growth of malignancies from various tissues. HER2
amplification promotes tumorigenesis (81), and human tumors and various tumor cell lines rely on
HER2 signaling for their survival. Such cancer cells are often referred to as HER2-addicted (82).
HER2 is the target of two FDA-approved monoclonal antibodies, trastuzumab (Herceptin) and
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pertuzumab (Perjeta), as well as the antibody drug conjugate trastuzumab emtansine (T-DM1;
Kadcyla) (83, 84). Nonetheless, trastuzumab resistance develops in a great number of patients,
and its effect on long-term overall survival is very small at best (85).

Besides recruiting immune effector cells through the Fc part (86), the antibodies interfere with
signaling. Pertuzumab binds next to the dimerization arm on subdomain II of HER2 (87) and
therefore interferes with HER2/HER3 heterodimer formation, provided the HER3 is activated by
its ligand heregulin (88, 89). Pertuzumab shows only moderate antitumor effects in vitro on HER2-
overexpressing breast cancer cell lines (90). In contrast, trastuzumab binds to the extracellular
subdomain IV of HER2, and it is thought to interfere with homodimerization of HER2 (91) (even
though this is controversial) and especially heterodimerization between HER2 and unliganded
HER3 in HER2-overexpressing tumors (89) (Figure 3a,b). For this reason, it is used to treat
patients with HER2-overexpressing breast cancers (92, 93).

Because the antibodies work only in conjunction with chemotherapy and because of the rapid
development of resistance with subsequent remissions, new therapeutics are required that work
differently. To create the modules for new modes of action, DARPins that bind to the extracellular
part of HER2 were selected (41, 45). Not unexpectedly, the monovalent DARPins did not show any
measurable effect on the growth of HER2-overexpressing tumor cells. However, DARPins can be
joined in many orientations and in multivalent and multispecific ways, and they can all be produced
and purified from E. coli with equal ease (e.g., 18, 94). By testing various multivalent HER2-binding
DARPin constructs, binders with strong cytotoxic effects on HER2-overexpressing tumor cells
could be identified. The most active constructs link a DARPin binding to domain I to one binding
to domain IV with a very short linker (95).

The crystal structure of these DARPins was determined in complex with the relevant domain
of HER2 (95), and because the HER2 domains, which are very rigid, superimpose perfectly onto
the domains in the context of the whole HER2 extracellular region, they can be placed directly
on this molecule (Figure 3c,e), thereby delineating the exact mode of binding of the DARPins
on HER2. Importantly, kinetic experiments on cells have shown that both domains are indeed
engaged simultaneously, but the short linker prevents binding in an intramolecular way. This is
true even if one considers that HER2 might assume a pseudotethered form (95)—for which there
is no evidence but whose existence under force cannot be rigorously excluded a priori. It thus
follows that the bispecific DARPins engage two molecules of HER2.

This structure then immediately explains the likely mode of action of the bispecific DARPins:
To connect the DARPin binding to domain I of one HER2 molecule to the DARPin binding to do-
main IV of a neighboring HER2, the former HER2 extracellular domain (ECD) has to bend over,
with the extracellular region moving more or less as a rigid body (Figure 3c,e). In fact, multiple
lines of evidence point to the fact that the whole extracellular region of HER2 is rather rigid (96,
97). Because HER2 is anchored by the transmembrane helix, it can move only in two dimensions
within the membrane. This DARPin-induced unusual locking of HER2 molecules has several
important consequences: It bends the dimerization arms of all bound HER2 molecules toward the
membrane, making them essentially inaccessible, and forces the transmembrane helices and the
directly connected kinase domains apart. Seminal work from Kuriyan and colleagues on the HER2
homologue epidermal growth factor receptor (EGFR) (98, 99) has shown that a mere random col-
lision of kinases would be insufficient for mutual activation—instead, they need to be positioned,
at least transiently, by the interaction mediated by the juxtamembrane peptide region, which in
turn would be prevented by the forced separation of the transmembrane helices (Figure 3).

This model makes several important predictions, which have all been borne out by experimental
support. A reversal of the order of domains in the bispecific DARPin will not enforce the bent
structure well, and indeed, those inverted constructs are much less active, as are constructs with

498 Plückthun

A
nn

u.
 R

ev
. P

ha
rm

ac
ol

. T
ox

ic
ol

. 2
01

5.
55

:4
89

-5
11

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

Z
ur

ic
h 

- 
H

au
pt

bi
bl

io
th

ek
 o

n 
01

/0
8/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



PA55CH26-Plueckthun ARI 1 December 2014 12:26

I
II

III

IV

K

HER2 monomer HER2 dimer

HER2 homodimer HER2 cross-linked

with bispecific DARPin

Pivoting of HER2 extracellular region
around membrane insertion point allows

cross-linking by bispecific DARPins

Dimerization loop
points to membrane

Kinase domains
not within reach

Bispecific DARPin

TM

N C

a b c

d e

Figure 3
Mechanism of action of bispecific DARPins to induce apoptosis in HER2-addicted tumor cells. (a) HER2 monomer with the
extracellular domains (roman numerals), the transmembrane domain (TM), and the kinase domain (K) indicated. (b) HER2 dimer
interacting via the dimerization loop. (c) Action of the bispecific DARPin (schematically shown on the top right in red and orange). On
the left HER2 monomer, the two monovalent DARPins (red and orange) are located as deduced from the individual crystal structures of
the complexes with the extracellular domains of HER2 (95). When the two DARPins are linked, as in the orientation shown on the
right, the only way that both can remain bound to HER2 is if the whole extracellular region bends over, as HER2 can only move within
the plane of the membrane. Bending of the whole extracellular region is possible because there are a few disordered residues in HER2
next to the membrane, providing a likely pivot. In contrast, the whole extracellular region is assumed to be rather rigid (see main text).
(d) Model of the HER2 homodimer, based on the experimental monomer structure and the dimer structure of the EGFR. (e) Detailed
model of the DARPin-induced, signaling-inactive state providing a pan-HER or panErbB inhibition, corresponding to the illustration
in panel c. The tilting of the whole extracellular region results in removal of the dimerization loop from possible interactions and pushes
the transmembrane helices, and thus the kinase domains, apart from each other; this abolishes stable contacts and thereby prevents the
kinases from trans-phosphorylation. HER2 is therefore removed from participating in signaling by an agent acting from the outside of
the cell. Other abbreviations: C, C terminus; DARPin, designed ankyrin repeat protein; EGFR, epidermal growth factor receptor;
HER2, human epidermal growth factor receptor-2; N, N terminus. Reprinted from Reference 95 with permission from Elsevier.

www.annualreviews.org • Designed Ankyrin Repeat Proteins (DARPins) 499

A
nn

u.
 R

ev
. P

ha
rm

ac
ol

. T
ox

ic
ol

. 2
01

5.
55

:4
89

-5
11

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

Z
ur

ic
h 

- 
H

au
pt

bi
bl

io
th

ek
 o

n 
01

/0
8/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



PA55CH26-Plueckthun ARI 1 December 2014 12:26

longer linkers. Mixtures of monovalent DARPins and mixtures of homobivalent constructs are all
inactive, emphasizing that it is the disengagement of the kinase in the inactive complex that is the
key (95).

The bispecific DARPins turn out to be pan-HER inhibitors. They lead to a loss of phosphor-
ylation from both HER2 and HER3, whereas trastuzumab only leads to HER3 dephosphory-
lation, with no effect on HER2 dephosphorylation (R. Tamaskovic, M. Schwill, C. Jost, D.C.
Schaefer, G. Nagy-Davidescu, A. Honegger & A. Plückthun, unpublished data). A detailed in-
vestigation of the DARPins’ interference with signaling has clarified how the DARPins achieve
this, and what the decisive differences are to the effects of trastuzumab and pertuzumab on signal-
ing. As a consequence, the net effect of the described DARPin treatment is the robust induction
of apoptosis in all HER2-overexpressing cell lines and tumors investigated, with no measur-
able effect on cardiac myocytes (R. Tamaskovic, M. Schwill, C. Jost, D.C. Schaefer, G. Nagy-
Davidescu, A. Honegger & A. Plückthun, unpublished data). In contrast, trastuzumab—always
given together with chemotherapy—has led to cardiotoxicity in a significant percentage of patients
(100).

By creating a trap for HER2, in which the receptor is bent over and kinases are unable to interact,
all signaling from HER2 complexes is obstructed, leading to a pan-HER inhibition. The outlined
strategy may be the first rational approach to engineer cell-specific apoptosis based on a structurally
and mechanistically understood principle yet without using a toxin with potential off-tumor side
effects. It thus has the potential to avoid resistance because of the DARPins’ receptor-mediated
cytotoxic and not their cytostatic action.

DARPins as a Delivery Vehicle in Tumor Therapy

Despite many open questions in EGFR-family biology, most receptors outside this family are
understood even significantly less well and do not yet lend themselves to the type of structure-
based engineering described for HER2. In these cases, the DARPin needs to deliver a payload,
and the main advantage of this platform is that it maintains its favorable biophysical properties as
a fusion protein.

Two DARPin examples, both using the epithelial cell adhesion molecule (EpCAM) as the
target, are discussed below to illustrate their potential. EpCAM is a homophilic cell adhesion
molecule of 291 amino acids, consisting of a large glycosylated and disulfide-bonded ECD, a
single transmembrane helix, and a short cytoplasmic domain (101, 102). The latter can be cleaved
off by intramembrane proteolysis as a result of specific cell-cell contacts and might, as a result,
travel to the nucleus to drive tumor and stem cell proliferation.

EpCAM is an attractive tumor-associated target, as it is expressed at low levels on basolateral
cell surfaces of only some normal epithelia, whereas high levels of homogeneously distributed
EpCAM are detectable on cells of epithelial tumors. Recently, EpCAM was also identified as a
marker of cancer-initiating cells (101, 102).

The favorable properties of EpCAM for cancer therapy are currently exploited in Phase II
clinical trials with an immunotoxin where an antibody scFv fragment is fused to Pseudomonas
aeruginosa exotoxin A (PE40/ETA) (103–106). This scFv-based immunotoxin had been developed
(104) before the DARPin technology was invented.

To exploit the favorable properties of DARPins, an EpCAM-specific DARPin was produced as
a fusion toxin with ETA and expressed in soluble form in the cytoplasm of E. coli (107) in excellent
yield. Whereas the DARPin has no cysteines, the disulfides in the toxin part formed sponta-
neously, and the protein was monomeric. The DARPin-ETA fusion was highly cytotoxic against
various EpCAM-positive tumor cell lines with IC50 values less than 0.005 pM. Upon systemic
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administration in athymic mice, the DARPin-ETA fusion efficiently localized to EpCAM-positive
tumors and resulted in a strong antitumor response in tumor-bearing mice, using two different
EpCAM-positive cell lines, leading to complete regressions in some animals (107).

The facile chemical modification of DARPins could also be used to couple them to PEG in
a bioorthogonal way at a defined position, thus not interfering with the thiols of ETA (69). The
non-natural amino acid azidohomoalanine (Aha), a methionine analog, can be incorporated in
methionine-auxotrophic E. coli. It allows strain-promoted click PEGylation with suitable strained
alkynes and thus does not require the use of toxic Cu(I). Despite an increased hydrodynamic
radius resulting from the polymer, the fusion toxin demonstrated high EpCAM-binding activity
and retained cytotoxicity in the femtomolar range. Pharmacological analysis in mice unveiled an
almost 6-fold increase in the elimination half-life and a more than 7-fold increase in the area
under the curve (AUC) compared to non-PEGylated DARPin-ETA, which translated directly
into increased and longer-lasting effects on established tumor xenografts (69).

Among the targeted toxins, besides the fusion proteins with protein toxins, antibodies with
chemical drug conjugates are showing important progress in the clinic (108). Here, DARPins
can also be used as building blocks, as their properties can be exploited for site-specific orthog-
onal coupling to two different moieties, a toxin and a component for half-life extension. In this
manner, EpCAM-targeting DARPin Ec1 was genetically modified with a C-terminal cysteine for
conjugation of monomethylauristatin F (MMAF) (68), and at the same time functionalized at the
N terminus by introducing Aha during production in E. coli. Because DARPins do not contain
cysteines and can easily be made methionine-free, either residue can be incorporated at any place
in the protein. Aha was linked to dibenzocyclooctyne-modified mouse serum albumin (MSA) for
half-life extension using strain-promoted click chemistry (68). The conjugate MSA-Ec1-MMAF,
assembled in high yields as a pure and stable drug conjugate, increased the serum half-life from
11 min to 17.4 h, resulting in a more than 22-fold increase in the AUC (68). DARPins can thus
be formatted for facile modular assembly of drug conjugates with improved pharmacokinetic
performance for tumor targeting.

DARPins have also been explored for the delivery of small interfering RNA (siRNA). Although
much research has been carried out on the biological function and application of siRNA for tumor
control, the efficient organ- and cell-specific uptake of nucleic acids remains a major challenge
for gene-targeted cancer therapies. An anti-EpCAM DARPin was used as a carrier for siRNA
complementary to the Bcl-2 mRNA, an antiapoptotic factor overexpressed in many cancers (109).
To achieve complexation of siRNA, the DARPin was genetically fused to protamine, a positively
charged protein that is probably unstructured, and about four to five molecules of siRNA could be
bound per protamine. This could be exploited to result in a significant sensitization of EpCAM-
positive MCF-7 cells toward doxorubicin. Indeed, this sensitization was not observed in EpCAM-
negative cells, indicating that siRNA uptake is receptor dependent (109). This direct delivery of
naked oligonucleotides to particular cells will have to be evaluated in comparison to delivery with
engineered viruses (see the next section).

DARPins for Viral Retargeting

Viral retargeting to predefined organs and cells is clearly one of the grand challenges of future
medicine. Recently, the first human gene therapy, an adeno-associated virus (AAV) encoding the
gene lipoprotein lipase to treat a genetic deficiency in this enzyme, alipogene tiparvovec (Glybera),
has received European Medicines Agency approval (110). Here, the virus’s natural broad tropism is
exploited to target muscles, as Glybera is injected just once into the muscle of the lower extremities,
where it is taken up by myocytes.
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Knob

Minimal
linker
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trimer

Retargeting
DARPin
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a

Retargeting
DARPin

Knob-binding
DARPin

Minimal linker

Trimerization
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Flexible linker

SHP1D3

b c

   C terminusC terminus

Figure 4
Adapter strategy for retargeting adenovirus (115). (a) Atomic model of adenovirus 5, highlighting the fibers (red ) that extend from the
viral capsid and consist of fiber shaft and knob domains, which were used for DARPin selection. (b) The adenovirus adapter. The gene
is shown at the bottom, and the protein can be made in Escherichia coli, where it assembles to a soluble and fully functional trimer. The
knob-binding DARPin ( green) is fused on one side to the phage SHP protein, which forms a very stable trimer ( yellow) that is
kinetically stable against dissociation (116). At the other end, the knob-binding DARPin is connected via a flexible linker (blue) to a
retargeting DARPin (orange) that binds to a cell surface receptor. This trimeric clamp shows no measurable dissociation from the virus
over 10 days. A detailed model is shown in panel c, based on the solved crystal structures of SHP alone and knob-binding DARPin in
complex with the knob domain. Abbreviations: DARPin, designed ankyrin repeat protein. Reprinted from Reference 115 with
permission from the US National Academy of Sciences.

There are three main challenges to generalizing viral delivery: (a) to specifically target the virus
to the cells of interest and to spare other tissues or organs; (b) to deliver a payload that is effective
for the desired application; and (c) to evade the immune system, at least for as long as necessary
to carry out the desired treatment. Adenoviruses (Ads) are a family of nonenveloped viruses that
contain a double-stranded DNA genome, which remains episomal—currently perceived as an
important safety factor—and they have been developed for gene therapy (111), genetic immu-
nizations (112), and molecular-genetic imaging (113). Their large genome makes it possible to
encode sophisticated genetic constructs and multiple genes.

Many strategies of retargeting are currently being pursued, including fusions with viral coat
proteins or covalent attachments to the coat (114). With DARPins, another approach became
possible, with a bispecific adapter that can be produced in E. coli (42, 115) (Figure 4). A series of
adapters was developed that bind to the virus with such high affinity that they remain fully bound
for more than 10 days, block its natural receptor-binding site, and mediate interaction with a
surface receptor of choice. The adapter contains two fused modules, both consisting of DARPins,
one binding to the fiber knob of adenovirus serotype 5 (Ad5) and the other binding to a cell
surface receptor of choice, e.g., various tumor markers. By solving the crystal structure of the
complex of the trimeric knob with three bound DARPins, computer modeling could be used to
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design a link to a trimeric protein of extraordinary kinetic stability, the capsid protein SHP from
the lambdoid phage 21 (116). A module was thereby derived that binds the knob like a trimeric
clamp (Figure 4c). When this clamp was fused with DARPins of varying specificities (Figure 4b),
it enabled Ad5-mediated delivery of a transgene in a HER2-, EGFR-, or EpCAM-dependent
manner with transduction efficiencies comparable to or even exceeding those of Ad itself. With
these adapters, all efficiently produced in E. coli and readily scaled up, Ads can be converted rapidly
to new receptor specificities using any ligand as the receptor-binding moiety. Prefabricated Ads
with different payloads can thus be retargeted readily to many different cell types of choice.

Lentiviral vectors lead to stable integration and transgene expression in nondividing cells. Cell
entry is dependent on two viral glycoproteins, hemagglutinin (H) and fusion protein (F) (117). By
using lentiviral vectors expressing MV-H and MV-F from measles virus (MV), and by specifically
creating a variety of fusions of MV-H to HER2-specific DARPins, infection of HER2-expressing
cells could be obtained (118). All H-DARPin fusion proteins tested were expressed efficiently on
the cell surface and incorporated into lentiviral vectors at a more uniform rate than different scFvs
tested, perhaps because of the more robust folding of the DARPin within the fusion protein. The
lentiviral vectors only transduced HER2-positive cells, whereas HER2-negative cells remained
untransduced. The location of the epitope may be important, as the highest titers were observed
with one particular anti-HER2 DARPin binding to the membrane-distal domain I of HER2; lower
titers were found for a DARPin binding to domain IV of HER2, which is closer to the membrane.
When these DARPin-carrying viral vectors were applied systemically in a mouse tumor xenograft
model, gene expression was observed exclusively in HER2-positive tumor tissue, whereas control
vectors mainly transduced cells in spleen and liver (118). Thus, DARPins constitute a promising
route to engineer the specificity of lentiviral vectors for therapy.

In a similar manner, MV has been reengineered with DARPins (119). The MV attachment pro-
tein was fused to DARPins, simultaneously ablating entry through the natural receptors. DARPin-
targeted viruses were strongly attenuated in off-target tissue, thereby enhancing safety, but com-
pletely eliminated tumor xenografts, albeit only after intratumoral injection. Because DARPins
can be linked without disturbing their folding, a virus could be generated that simultaneously
targets two different tumor markers. The bispecific virus retained the original oncolytic efficacy
while providing proof of concept for a strategy to counteract issues of resistance development
(119).

Finally, AAV has also been retargeted with DARPins by using a fusion to the VP2 protein
on AAV capsids ablated for natural primary receptor binding. DARPin-AAV vectors delivered a
suicide gene to tumor tissue and substantially reduced tumor growth without causing fatal liver
toxicity (120).

DARPins in the Clinic

DARPins have been selected against human vascular endothelial growth factor VEGF-A with
single-digit picomolar affinity (121) for the treatment of diabetic macular edema (DME) and age-
related macular degeneration (AMD) (122). To facilitate preclinical and clinical development,
DARPins were chosen that showed cross-reactivity with VEGF-A of several mammalian species.
Intravitreally injected DARPin penetrated into the retina and reduced fluorescein extravasation in
a rabbit model of vascular leakage. In addition, topical DARPin application was found to diminish
corneal neovascularization in a rabbit suture model and to suppress laser-induced neovasculariza-
tion in a rat model.

To evaluate the safety and bioactivity of MP0112 (AGN-150998, abicipar pegol), the anti-
VEGF DARPin, a Phase I/II, open-label, multicenter, dose-escalation trial was carried out in
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patients with DME (123) to assess safety, aqueous MP0112 levels, change in best-corrected visual
acuity (BCVA), and foveal thickness measured by optical coherence tomography. The DARPin
showed long residence in the eye: One week after the injection of 0.4 mg, the concentration was 555
nM and was >10 nM in 3 of 4 patients 12 weeks postinjection. Thus, even at this modest injected
dose, DARPin concentrations in the aqueous humor remain above the half-maximal inhibitory
concentration after 8–12 weeks. Median BCVA improvement at week 12 was 4, 6, and 10 letters
in cohorts receiving 0.04 mg, 0.15 mg, and 0.4 mg, respectively.

Initial data have been released from a parallel AMD trial (124, 125), a Phase I/II, open-label,
multicenter, dose-escalation trial. The clinical study with DARPin MP0112 assessed the safety and
preliminary efficacy in treatment-naive patients for 16 weeks. The MP0112 wet AMD study (124,
125) consisted of different dose-ascending cohorts, with patients receiving a single dose of MP0112
(from 0.04 to 3.6 mg) as intravitreal injections. MP0112 was safe and well tolerated. Visual acuity
scores were stable or improved compared with baseline for ≥4 weeks following injection; both
retinal thickness and fluorescein angiography leakage decreased in a dose-dependent manner. At
the end of the 16 weeks’ follow-up, all patients had stable or increased visual acuity. At the 4-week
visit, only 4 of 10 (40%) patients who received 1.0 or 2.0 mg required rescue therapy. Of patients in
the higher-dose cohorts who did not require rescue treatment, 83% (5/6) maintained reductions
in central retinal thickness through week 16. Thus, the higher MP0112 doses show potential for
quarterly dosing for the treatment of wet AMD.

DARPin MP0112 (AGN-150998, abicipar pegol) therefore represents a very promising, new,
anti-VEGF treatment option with potential in various retinal diseases. It directly shows that a
benefit for the patient can be achieved with proteins engineered to have very good biophysical
properties, combined with very high target affinity and specificity.

DARPins in Other Approaches

For space reasons, other approaches of potential therapeutic significance can be mentioned only
briefly. DARPins have been used to investigate the steps of apoptosis, either to control the reg-
ulators of the Bcl-2 family (31, 126) or those of caspases (46, 127). Tubulin polymerization and
depolymerization control many critical aspects of the cell, and DARPins have been selected that
cap the microtubule plus end. They stop polymerization and help give structural insight into tubu-
lin and kinesin motors (128, 129). These are all intracellular targets, nota bene, and the activities
of the DARPins can be fully exploited only once gene delivery, such as with engineered viruses,
or efficient protein delivery to the cytoplasm becomes a reality.

DARPins have also been selected to bind to IgE or its receptor FcεRIα (130–132), and they
might be further developed to interfere with the allergic response. Another DARPin target has
been gp120 of HIV, whose binders may be used to eventually develop novel modes of action for
HIV entry inhibitors (133). These additional examples further illustrate how modular the DARPin
system is and that many of the approaches described in all sections of this review can be combined
into new strategies.

Immunogenicity

Very few aspects of therapeutic proteins have been as hotly debated as the issue of immunogenicity.
Because there are few certain facts, speculations are invited, alleging immunogenicity or the lack
of it, depending on which side of the fence one is on with regard to a particular molecule or protein
class.

Any type of protein, including fully human antibodies in human patients, can be immunogenic,
as found for adalimumab (Humira), for example (134). Conversely, each individual case is still
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almost impossible to predict. Different studies have reached different conclusions over whether
there is a connection between an immune response and reduced clinical efficacy of this fully
human antibody (summarized in Reference 134), because, for instance, the antibody might become
neutralized.

DARPins show essentially no aggregation propensity, making a T cell–independent immune
response highly unlikely. DARPins devoid of experimental T cell epitopes can be obtained from
selections, as the constant parts do not carry them, and those sections containing randomized
residues can be tested in the form of overlapping peptides against human T cells.

The nonzero risk of immunogenicity when administering any therapeutic protein whatsoever
must be balanced by a clear patient benefit, e.g., by novel modes of action, as exemplified in the
apoptosis-inducing HER2-binding molecules in Figure 3. Clearly, the whole field of therapeutic
antibodies and therapeutic proteins eagerly awaits truly predictive animal models of immuno-
genicity in humans—better yet, in vitro models—and ultimately a complete understanding with
the ability to control it.

CONCLUSIONS AND PERSPECTIVES

Today, three classes of molecules have been developed successfully into drugs: (a) small molecules,
(b) whole antibodies, and (c) other engineered proteins. Although ever more members of the first
two classes are being discovered and developed, their principal mode of action is unlikely to change:
Small drug-like molecules can and will typically enter any cell, and their specificity is given entirely
by a high affinity for the protein of choice and a low affinity for most other proteins. Antibodies
can be engineered to achieve any desired cell specificity via a surface receptor interaction or to
titrate out components from the serum, but they cannot efficiently get access to cytoplasmic targets
that would require them to first cross a membrane. Both can be combined as in antibody-drug
conjugates, but the delivered quantities limit this to the most active toxins, with a very narrow
therapeutic window.

However, therapeutic intervention will not end there. We can chart out desirable strategies for
the future that will, however, critically depend on engineering proteins beyond what is possible
with immunoglobulins and small molecules. Examples are strategies to achieve receptor inactiva-
tion by novel cross-linking, engineering viruses for cell-specific uptake to use the body’s cells for
producing therapeutic proteins, and designing proteins entering not only endosomes but also the
cytoplasm. Obviously, the delivered proteins must remain folded there. This would make many
undruggable targets druggable, as binding proteins for any target can already be made today.

It thus appears that protein engineering will have a major role to play in the development of
future medicines. We just have to be in it for the long haul.
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40. Luginbühl B, Kanyo Z, Jones RM, Fletterick RJ, Prusiner SB, et al. 2006. Directed evolution of an
anti-prion protein scFv fragment to an affinity of 1 pM and its structural interpretation. J. Mol. Biol.
363:75–97

41. Zahnd C, Wyler E, Schwenk JM, Steiner D, Lawrence MC, et al. 2007. A designed ankyrin repeat
protein evolved to picomolar affinity to Her2. J. Mol. Biol. 369:1015–28

42. Dreier B, Mikheeva G, Belousova N, Parizek P, Boczek E, et al. 2011. Her2-specific multivalent adapters
confer designed tropism to adenovirus for gene targeting. J. Mol. Biol. 405:410–26

43. Dreier B, Plückthun A. 2010. Ribosome display, a technology for selecting and evolving proteins from
large libraries. Methods Mol. Biol. 687:283–306

44. Amstutz P, Binz HK, Parizek P, Stumpp MT, Kohl A, et al. 2005. Intracellular kinase inhibitors selected
from combinatorial libraries of designed ankyrin repeat proteins. J. Biol. Chem. 280:24715–22
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