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SUMMARY

Human epidermal growth factor receptor-2 (HER2) is
a receptor tyrosine kinase directly linked to the
growth of malignancies from various origins and a
validated target for monoclonal antibodies and
kinase inhibitors. Utilizing a new approach with de-
signed ankyrin repeat proteins (DARPins) as alterna-
tive binders, we show that binding of two DARPins
connected by a short linker, one targeting extracel-
lular subdomain I and the other subdomain IV,
causes much stronger cytotoxic effects on the
HER2-addicted breast cancer cell line BT474, sur-
passing the therapeutic antibody trastuzumab. We
determined crystal structures of these DARPins in
complex with the respective subdomains. Detailed
models of the full-length receptor, constrained by
its rigid domain structures and its membrane
anchoring, explain how the bispecific DARPins
connect two membrane-bound HER2 molecules,
distorting them such that they cannot form
signaling-competent dimers with any EGFR family
member, preventing any kinase dimerization, and
thus leading to a complete loss of signaling.

INTRODUCTION

The human epidermal growth factor receptor 2 (HER2, hErbB2) is

a receptor tyrosine kinase expressed on the cell surface of nearly

every cell in the human body. HER2 contributes tomultiple signal

transduction pathways, but mainly stimulates the HER3/PI3K/

Akt pathway and the mitogen-activated protein (MAP) kinase

cascades, leading to cell survival and proliferation (Yarden and

Sliwkowski, 2001; Craven et al., 2003). HER2 amplification pro-

motes tumorigenesis (Faber et al., 2010), and human tumors

and various tumor cell lines rely on HER2 signaling for their

survival. Such cancer cells are often referred to as ‘‘HER2-

addicted’’ (Moasser, 2007).

Trastuzumab (Herceptin, Genentech), a humanized mono-

clonal antibody binding to the extracellular subdomain IV of

HER2 (HER2_IV), is effectively used in the clinic to treat

patients with HER2-overexpressing breast cancers (Cobleigh
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et al., 1999; Finn and Slamon, 2003). Besides exerting cytotoxic

effects in vivo through antibody-dependent cellular cytotox-

icity (ADCC) and complement-dependent cytotoxicity (CDC),

trastuzumab mainly acts as a cytostatic agent inducing a G1

phase cell-cycle arrest in HER2-amplified cancer cells (Sliwkow-

ski et al., 1999). Inhibition of HER2 homodimerization (Ghosh

et al., 2011) and of HER2/HER3 heterodimerization (Junttila

et al., 2009) is thought to be responsible for this antiproliferative

effect. Pertuzumab (Perjeta, Genentech), a humanized mono-

clonal antibody binding next to the dimerization arm on subdo-

main II of HER2, shows only moderate antitumor effects in vitro

on HER2-overexpressing breast cancer cell lines (shown for

SkBr-3 cells; Schaefer et al., 1997). However, for cell lines with

normal HER2 expression levels that are grown in the presence

of the HER3-activating ligand Heregulin, which efficiently stimu-

lates HER2/HER3 heterodimer formation (Sliwkowski et al.,

1994), the effect of pertuzumab exceeds the effect of trastuzu-

mab (Schaefer et al., 1997). This finding can be explained in

that pertuzumab, bound next to the HER2 dimerization arm,

sterically blocks the formation of back-to-back heterodimers

that are induced by ligand stimulation of HER3 (Franklin et al.,

2004).

Recently, Trastuzumab emtansine (T-DM1) (Kadcyla), a may-

tansinoid conjugate (Burris et al., 2011; Verma et al., 2012), has

become Food and Drug Administration approved. It is thought

to be endocytosed with the slow internalization and recycling

rates intrinsic to ErbB2 and thus to release the toxin. These

encouraging data stimulate the search for novel mechanisms

of action, whichmay pave theway for agents not requiring a con-

jugated toxin.

Recent studies on the regulation of the homologous receptor

EGFR have shown that receptor dimerization is required, but

may not be sufficient for full receptor activation (Arkhipov

et al., 2013; Endres et al., 2013). Dimerization of ECD, transmem-

brane (TM) helices and, as a consequence, the kinase domains

have to take place in a well-ordered mechanism, requiring, for

example, pairing the N-terminal, but not the C-terminal, parts

of the two TM-helices for functional dimerization of the kinase

domains. Additional factors modifying the coupling between

dimerization of the extracellular domain to the dimerization and

activation of the kinase domain may contribute to the subtle

regulation of receptor activity (Arkhipov et al., 2013; Endres

et al., 2013).

Tumor cells becoming refractory to trastuzumab treatment

present a major clinical problem. This is caused not only by
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downregulation or loss of HER2 expression, but also by various

mutations bypassing the blocked HER2-signaling, including

constitutive activation of the PI3K-signaling pathway, accumula-

tion of a constitutively active HER2-kinase, and crosstalk of

HER2with other growth factor receptors (Xia et al., 2004; Sergina

et al., 2007). Acquisition of trastuzumab resistance might be pro-

moted by the cytostatic effect of trastuzumab, which allows the

tumor to undergo a directed evolution to escape treatment.

Thus, an optimal drug against HER2-overexpressing cancer

cells would have to be cytotoxic instead of cytostatic, but the

cytotoxicity should not broadly aim at all HER2-expressing cells,

but rather specifically target cancer cells that are dependent

on HER2.

The concept that HER2 remains the active oncogenic driver in

many cancer cells (e.g., by signaling through HER2-HER3-heter-

odimers) motivates further research for alternative molecular

therapies targeting HER2 (Gajria and Chandarlapaty, 2011). To

expand and complement existing anti-HER2 therapies beyond

pertuzumab and trastuzumab or any toxin conjugates, such as

T-DM1 (Burris et al., 2011), further HER2 binders that employ

alternative mechanisms should thus be developed for abolishing

HER2-dependent signaling.

Designed ankyrin repeat proteins (DARPins) are binding scaf-

folds that have recently been developed to expand the range

of formats and applications beyond what is possible with

immunoglobulin-based proteins (Binz et al., 2004; Boersma

and Plückthun, 2011). Because of their small size, high stability,

and efficient folding, DARPins can easily be fused to each other

in different orientation and geometries and to different protein

domains to generate multivalent or multispecific constructs or

to provide targeting specificity to effector proteins. They are

highly suitable for site-specific chemical modification (Simon

et al., 2012), such as coupling to polyethylene glycol (PEGylation)

to increase the hydrodynamic radius and thus serum half-life and

thereby promote tumor uptake (Zahnd et al., 2010) or conjuga-

tion of toxins. While they have been used for targeting toxins to

a tumor (Martin-Killias et al., 2011), it is of interest to investigate

whether they can also exert a biological function by themselves.

Thus, they appear predestined as binding moieties for novel

approaches in targeted therapy. DARPins recognizing the solu-

ble recombinant ectodomain of HER2 (HER2-ECD) with subna-

nomolar to low-nanomolar affinities were selected by ribosome

display (Zahnd et al., 2007) and phage display (Steiner et al.,

2008). These HER2-specific DARPins have been used for histo-

chemical staining (Theurillat et al., 2010), for tumor targeting of

toxins (Zahnd et al., 2010), and for targeting adenoviral (Dreier

et al., 2013) and lentiviral vectors (Münch et al., 2011) to HER2-

overexpressing cells.

In this paper, we demonstrate the cytotoxic activity of bispe-

cific DARPin constructs against the HER2-addicted cell line

BT474, a widely used model system for testing anti-HER2 activ-

ity in vitro. The bispecific DARPins not only induce a cytostatic

effect like trastuzumab, but also act as specific cytotoxic agents.

This cytotoxic effect does not rely on any conjugated toxin, but is

intrinsic to the binding mechanism.

The results were confirmed on a broad panel of breast tumor

cell lines and tumor models developed by R.T. and colleagues

(R.T., M.S., C.J., D.C. Schaefer, G. Nagy-Davidescu, M. Göran-

son, A.H., and A.P., unpublished data), who proceeded to char-
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acterize in great detail the influence of these constructs on

various aspects of downstream signaling, such as phosphoryla-

tion pattern, downstream kinase activity and apoptotic markers.

They showed that the most potent of the bispecific DARPins

cause a persistent inhibition of both the phosphatidyl-inositol-

3-kinase (PI3K-AKT/PKB) and the RAS-RAF-MAPK pathway,

leading to a strong apoptotic response.

Based on the X-ray structures of three DARPins in complex

with the cognate HER2-ECD subdomain we have determined

here, we propose a model of how such a complete shutdown

of HER2-dependent signaling is achieved.

RESULTS

Epitope Mapping of HER2-Binding DARPins
DARPins that had been selected by phage display (Steiner et al.,

2008) or ribosome display (Zahnd et al., 2007) to target the full-

length ectodomain of HER2 without showing any cross-speci-

ficity against other EGFR-family members were characterized

to determine which of the four HER2 subdomains forms the

epitope. Since DARPins typically recognize conformational

epitopes, we expressed subdomains alone and in combination

in insect cells using a baculovirus system (Supplemental Exper-

imental Procedures available online). To minimize glycosylation

for subsequent crystallization, we replaced the Asn residues in

predicted N-linked glycosylation sites by Asp. ELISAs on these

proteins showed that the epitopes recognized by DARPins

9_26 and 9_29 are located on HER2-I, while DARPin G3 bound

to HER2-IV (Figure S1A). Competition for binding to HER2-over-

expressing cells measured by flow cytometry revealed that

DARPins 9_26 and 9_29 compete for the same epitope (Fig-

ure S1B). DARPin G3, which binds to HER2 subdomain IV, did

not compete with trastuzumab but competed with a different

HER2-specific DARPin, H_14, which in turn competed with

trastuzumab.

Construction of Bispecific Binders Targeting Different
Epitopes
Various bivalent and bispecific constructs were generated by

genetically fusing two DARPins by (G4S)n linkers of different

lengths. To target two nonoverlapping epitopes with a single

molecule, DARPins 9_29 or 9_26 were connected to DARPin

G3 by a 20-amino-acid linker, with either an ECD-I binder at

the N-terminal end and the ECD-IV binder at the C terminus or

in opposite orientation. The four different bispecific binders

[e.g., 9_26-(G4S)4-G3, abbreviated ‘‘6_20_G’’ for the two

DARPins and the linker length of 20 amino acids] were tested

regarding their binding to HER2-overexpressing cells. G3 with

a dissociation constant (KD) of 90 pM (Zahnd et al., 2007) has

the highest affinity of the three HER2 binders used in this study,

compared to a KD of 1 nM for 9_26 and 1 nM for 9_29 (Steiner

et al., 2008). Kinetic experiments on cells in the presence of a

competing DARPin (to prevent rebinding) revealed that the

off-rates of the bispecific binders were ten times lower than

the off-rates of monovalent G3 (Figure 1A; Table S1). The

slower off-rate and lower KD of the bispecific constructs,

compared to their monovalent building blocks, can be attributed

to an avidity effect and indicates bispecific binding to HER2 on

the cell.
All rights reserved



Figure 1. Biological Activity of DARPin

Constructs

(A) Dissociation of monovalent and bispecific

DARPins from the surface of BT474 cells. Median

fluorescence intensities (MFI) of fluorescently

labeled DARPins bound to the BT474 cell surface

are plotted as a function of dissociation time. See

Table S1 for fitted off-rates, Figure S1A for ELISA

epitope mapping, and Figure S1B for binding

competition on intact cells.

(B–G) Inhibition of cell proliferation was deter-

mined by XTT assays with HER2-addicted BT474

cells. Cells grew for 72 hr in the presence of

different concentrations of DARPins. Bispecific

DARPins 6_20_G and 9_20_G decreased the cell

viability, whereas the reversely oriented con-

structs G_20_6 and G_20_9 did not. Cells that

grew in the presence of 100 nM trastuzumab and

cells growing without treatment served as control

(CTRL). Error bars indicate SD. (B) Biological

effects of monovalent DARPins. (C) Bispecific

DARPins containing a nonbinding DARPin are

shown. Off7 is a control DARPin recognizing

maltose binding protein. G_20_G is homobivalent

and contains twice the DARPin G3. (D) Biological

effects of bispecific anti-HER2-DARPins on

HER2-addicted BT474 cells and (E) on non-

overexpressing MCF7 cells. (F) Effect of linker

length on biological activity of bispecific DARPins

in 9_x_G orientation or (G) in G_x_9 orientation.
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Effects of Mono- and Bivalent Constructs on Cell
Proliferation and Cell Death
We tested the influence of the different DARPin constructs on

cell proliferation and cell survival in XTT assays, using BT474

cells as an example of a HER2-addicted cell line. MCF7-cells,

which express HER2 at much lower levels than BT474 cells,

were used as a control. Calibration experiments showed that a

signal decrease by 60%, compared to untreated cells, corre-

sponded to lack of cell proliferation over the 4 days of cell growth

before the XTT assay; a larger decrease indicated cell death.

None of the monovalent DARPins characterized in this study

affected the number of viable cells measured by the XTT assay

(Figure 1B). Mixtures of two different DARPins proved to be
Structure 21, 1979–1991, November 5, 2013 ª
equally inert, as did control constructs in

which one of the two DARPins in the

bispecific molecule had been replaced

by a non-HER2-binding DARPin (DARPin

off7, targeting maltose-binding protein;

Binz et al., 2004) (Figure 1C). A monospe-

cific bivalent DARPin, G_20_G, even

stimulated cell proliferation (Figure 1C).

Bispecific constructs composed of a

subdomain I binder at the N terminus

and the subdomain IV binder at the C ter-

minus (6_20_G or 9_20_G) showed a con-

centration-dependent decrease of cell

viability by up to 75%, while treatment

with trastuzumab decreased viability by

�50% (Figure 1D). The constructs with

reverse orientation (G_20_9) either lacked
any effect on cell growth (G_20_6) or even slightly promoted cell

growth. Similar to trastuzumab, bispecific constructs did not

affect the cell proliferation of MCF7 cells (Figure 1E), suggesting

the restriction of the observed effects to HER2-addicted cells.

Comparison of constructs with 5, 10, 20, 30 and 40 amino acid

linkers showed that for 9_x_G constructs, specific activity and

potency decreases with increasing linker length. The most

potent constructs proved to be 6_5_G and 9_5_G, with (G4S)-

linkers of only five amino acids. They decreased the cell viability

in XTT-assays after 4 days of growth by more than 80%, as

compared to untreated cells, and showed a half-maximal effect

already at a concentration of less than 100 pM compared to ca.

1 nM for 6_20_G and 9_20_G. Conversely, increasing the linker
2013 Elsevier Ltd All rights reserved 1981



Table 1. Statistics for Data Collection and Refinement

Complex Statistics

HER2_I/9_29

Data collection

Space group oP: P212121

Cell dimensions, Å a = 46.6, b = 80.5, c = 115.1

a = b = g = 90�

AU content 1 complex

VM, Å3/Da 2.63

Resolution limits, Å 50 – 2.55

Observed reflections total 53,167; unique 14,553;

possible 14,772

Completeness, % 98.7 (99.4)*

R-merge 7.1 (40.7)*

I/s 17.83 (4.01)*

Refinement

Resolution range, Å 50-2.55

Final R-cryst, R-free, % 20.22, 25.39

Number of residues 331

Number of solvent molecules 31

Number of atoms 2559

Mean B-factor, Å2 32.99

rmsd (bonds), Å 0.008

rmsd (angles), � 1.293

Ramachandran analysis, % 97.2/2.8/0

HER2_I/9_26

Data collection

Space group mC: C2

Cell dimensions, Å a = 138.5, b = 60.7, c = 107.2

a = 90�, b = 118.9�, g = 90�

AU content 2 complexes

VM, Å3/Da 2.40

Resolution limits, Å 50 – 3.2

Observed reflections Total 37,684, unique 12,785,

possible 13,151

Completeness, % 97.2 (98.3)a

R-merge 7.1 (20.8)a

I/s 14.37 (5.94)a

Refinement

Resolution range, Å 50-3.2

Final R-cryst, R-free, % 31.31, 33.94

Number of residues 547

Number of solvent molecules 0

Number of atoms 3517

Mean B-factor, Å2 48.66

rmsd (bonds), Å 0.004

rmsd (angles), � 0.766

Ramachandran analysis, % 88.7/9.6/1.7

HER2_IV/G3

Data collection

Space group hR: R32

Table 1. Continued

Complex Statistics

Cell dimensions, Å a = 195, b = 195, c = 112

a = 90�, b = 90�, g = 120�

AU content 2 complexes

VM, Å3/Da 1.95

Resolution limits, Å 50 – 2.65

Observed reflections total 120,455; unique 23,767;

possible 23,791

Completeness, % 99.9 (99.9)a

R-merge 4.1 (51.1)a

I/s 26.42 (3.54)a

Refinement

Resolution range, Å 50-2.65

Final R-cryst, R-free, % 21.32, 24.59

Number of residues 385

Number of solvent molecules 0

Number of atoms 2,808

Mean B-factor, Å2 47.60

rmsd (bonds), Å 0.009

rmsd (angles), � 1.204

Ramachandran analysis, % 94.7/4.5/0.8
aValues in parentheses refer to the highest-resolution shell.
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length to forty amino acids, as in 6_40_G and 9_40_G, decreased

the biological activity (growth reduction of only 40%) (Figure 1F).

The constructs with inverse orientation, G_x_6 and G_x_9, inac-

tive or even stimulatory at a linker length of 20 amino acids,

gained anti-proliferative activity at short linker lengths, but the

best construct was found to be only as active as trastuzumab

(Figure 1G).

Neither the single DARPins nor the bispecific constructs

affected internalization or degradation of HER2, as determined

by flow cytometry (R.T., M.S., C.J., D.C. Schaefer, G. Nagy-

Davidescu, M. Göranson, A.H., and A.P., unpublished data).

X-Ray Crystal Structures of Complexes HER2_I:9_29,
HER2_I:9_26, and HER2_IV:G3
The structures of the complexes of HER2_I with DARPin 9_29

and with 9_26 were determined at 2.55 Å and 3.2 Å resolution,

respectively, the structure of HER2_IV in complex with G3 at

2.65 Å resolution. A summary of data collection statistics and

refinement results is listed in Table 1. Unliganded 9_26 was

solved to 2.9 Å (unpublished data), unliganded G3 (Protein

Data Bank [PDB] ID 2JAB) (Zahnd et al., 2007) to 1.7 Å. G3

and unliganded 9_26 contain the original DARPin C-cap, which

by NMR had been shown, to some percentage, to show some

transient unfolding in solution (Wetzel et al., 2010). For crystalli-

zation in complex with HER2_I, this C-cap was replaced by an

optimized C-cap (Mut5) (Interlandi et al., 2008) in DARPins

9_29 and 9_26, which does not give any sign of transient

unfolding.

The asymmetric unit of HER2_I:9_29 contains one heterodi-

meric complex with seven intermolecular hydrogen bonds (Table

S2) and a buried surface area of 784 Å2 (Figures 2A–2C). In the
All rights reserved



Figure 2. Structures of DARPin:HER2 Complexes

DARPins 9.29 (red) and G3 (orange) in complex with HER2 subdomain I and IV, respectively (blue). HER2 residues having at least one nonhydrogen atom within

5.0 Å of a nonhydrogen atom of the DARPin (i.e., epitope residues) are shown in yellow, thosewith atomswithin 5.0 Å of the DARPin (solvent excluding contacts) in

orange, and those with atoms within 3.6 Å (Van-der-Waals contacts) in red.

(A–C) DARPin 9_29 in complex with HER2_I.

(D–F) DARPin G3 in complex with HER2_IV.

(C and F) Close-up of epitope and paratope: side chains of residues having at least one nonhydrogen atomwithin 5.0 Å of a nonhydrogen atom of HER2 (paratope

residues) are shown in stick representation.

See Figure S2 for superpositions of the HER2 subdomains on the full-length HER2_ECD and Table S4 for rmsd values.
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asymmetric unit of HER2_I:9_26, two heterodimers are present.

Due to the limiting quality of the HER2_I:9_26 data set, the slight

differences that are visible between the two complexes of the

asymmetric unit leave some minor uncertainty about the exact

geometry of the binding of DARPin 9_26. Most of our analyses

are therefore concentrated on the HER2_I:9_29 complex. How-

ever, despite the lower resolution of the HER2_I:9_26 structure

compared to the HER2_I:9_29 structure, two crucial conclusions

can be drawn from the presented structure: the buried surface

area, and more importantly the orientation, of 9_26 are very

similar to the mode of binding of the better resolved 9_29 to

HER2_I. The asymmetric unit of the HER2_IV:G3 structure con-

tains two heterodimeric complexes with 7 and 5 intermolecular

hydrogen bonds between DARPin G3 and HER2_IV (Table S3),

respectively, and a buried surface area of 818 Å2 (complexes

A/D, Figures 2D–2F) or 759 Å2 (complex B/C).

The conformation of HER2_I and HER2_IV is essentially the

same as that of the respective subdomain in structures of the

whole extracellular domain of HER2 (Cho et al., 2003; Garrett

et al., 2003; Franklin et al., 2004; Bostrom et al., 2009; Fisher

et al., 2010), with root-mean-square deviation (rmsd) values for

the Ca-backbone around 0.49 to 0.81 Å for HER2_I and 0.24 to

0.68 for HER2_IV (Table S4; Figures S2A and S2B), underlining

the rigidity of the HER2 domains.
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A comparison of the epitopes recognized by various HER2

binders in the Protein Data Bank (Figure 3) shows that the re-

gions recognized by the three DARPins do not overlap with epi-

topes recognized by any of the other binders: scFv A21 binding

to domain I (Zhou et al., 2011), therapeutic antibody pertuzumab

recognizing subdomain II (Franklin et al., 2004), Z-domain-

derived affibody zHER2 (Eigenbrot et al., 2010) recognizing the

same epitope on domain III as Fab37 (Fisher et al., 2010), and

trastuzumab (Cho et al., 2003) and its HER2/VEGF dual specific

variant bH1 (Bostrom et al., 2009) binding to subdomain IV.

DARPins 9_29 and 9_26 bind to the same epitope on HER2_I,

involving residues from the N-cap and the first two internal re-

peats (Figure 4). The third repeat and the C-cap make no con-

tacts. The DARPin contacts two adjacent strands of HER2_I at

the edge of this domain, including further interactions down

the side perpendicular to the b helix axis of domain I, which is

a member of the L-domain family. The high-affinity binding of

DARPin 9_29 to HER2_I is governed by six hydrogen bonds,

p-stacking, and extended hydrophobic interactions described

in detail in Supplemental Experimental Procedures and Table

S2. Epitope and paratope residues are highlighted in the

sequence alignments shown in Figure S3. Comparison of the

sequence differences between the two DARPins to this contact

map shows that 14 out of 19 contact residues are conserved.
91, November 5, 2013 ª2013 Elsevier Ltd All rights reserved 1983



Figure 3. Superposition of HER2 Complexes on the Full-Length

HER2 ECD

DARPin 9_29 (PDB ID 4HRL, red) is binding to subdomain I, DARPin G3 (PDB

ID 4HRN, orange) to subdomain IV. In addition, Fab fragments of the thera-

peutic antibody trastuzumab (Herceptin, PDB ID 1N8Z, pale green), its derived

HER2/VEGF dual specific variant bH1 (PDB ID 3BE1, forest green), and per-

tuzumab (Perjeta, PDB ID 1S78, lime) are shown, as well as Fab 37 (PDB ID

3N85, pale yellow), scFv chA21 (PDB ID 3H3B, sand color), and Z-domain

affibody zHER2 (PDB ID 3MZW).
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Construct HER2-IV spans residues 509–604 of the HER2-

ECD, omitting the last two disulfide bonds. Residues 581–604

are disordered in the structure. DARPin G3 binds to an

epitope on the N-terminal half of subdomain IV (residues

513–564). The structure of G3 in the complex is well maintained

compared to its uncomplexed structure (rmsd 0.65 or 0.55 Å;

Figure S2C), demonstrating that the DARPin:HER2 complexes

can, in a first approximation, be considered as rigid-body

interactions. The paratope comprises both internal repeats

and the C-cap of the DARPin (Figure 2; Figure S3). The long

axis of the DARPin is at nearly a right angle to the long axis

of HER2_IV, the DARPin b-turns facing toward the membrane.

The DARPin wraps around the rod shaped Cys-rich domain IV,

its slight curvature is fitting the target shape very well, explain-

ing the high affinity of 90 pM. It contacts two protrusions,

formed by the loop spanned by Cys 523 and 539 and the

adjacent pair of interlocked disulfide bond. Two of the four

mutations introduced during affinity maturation are directly

involved in binding interaction. Of the 14 randomized residues,

9 are involved in specific contacts, as are several framework

residues. Six hydrogen bonds and extended hydrophobic inter-

actions, altogether contributed by 13 residues (Supplemental

Experimental Procedures), are responsible for the picomolar

affinity of G3. The atomic interactions are summarized in

Table S3. Thus, although G3 possesses only two internal re-

peats, the perfectly matching hydrophobic and hydrogen

bonding interactions, contributed by adapted curvature as a

result of directed evolution (Zahnd et al., 2007), account for

its high affinity.
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Molecular Modeling of Full HER2 and DARPin-Inhibited
States
Since the HER2 domains are very rigid and their structure did not

change between the DARPin complexes and the whole ECD, we

could easily place the DARPins on the full HER2_ECD (residues

1–620). We also built models of putative HER2_ECD homo- and

heterodimers (see Supplemental Experimental Procedures for a

detailed description of the modeling procedure), taking into

account all available ErbB-family structures to make the models

as realistic as possible. The DARPins bound to HER2_I and

HER2_IV could be added to the HER2 monomer and dimer

models without any clashes (Figures 5A–5D).

To build a model of the whole receptor, the HER2-ECD model

was combined with the NMR structures of transmembrane heli-

ces (PDB ID 2JWA; Bocharov et al., 2008) and the X-ray struc-

tures of the kinase domains (PDB ID 3PP0 for the active kinase

dimer [Aertgeerts et al., 2011] and 3RCD for the inactive kinase

[Ishikawa et al., 2011]), taking the electron-microscopy-based

models of Mi et al. (2011) as a guide. Seven residues between

the last disulfide bridge of ECD domain IV and the start of the

transmembrane helix and 30 residues between TM domain and

kinase were treated as flexible to connect the domains.

The resulting models assume that initially both monomer and

dimer stand upright on the membrane and that the HER2-ECD

is as rigid as suggested previously (Cho et al., 2003; Dawson

et al., 2007).

The distance between the C-term of the domain I-binding

DARPin and the N-term of the domain-IV-binding DARPin is

130 Å on the sameHER2molecule (Figure 5A). For intramolecular

binding to a HER2_ECD monomer in this orientation, 9_x_G, the

linker would have to be even longer, as it needs to wrap around

the monomer. However, the most active of our constructs has a

linker length of a mere five amino acids, spanning no more than

17 Å, which thus excludes intramolecular binding (Figure S4).

To connect two DARPins on the same side of the HER2 homo-

dimer (Figures 5C and 5D), the linker would have to span at least

80 Å for the 9_x_G construct, and to connect DARPins on two in-

dependent monomers, the linker would have to span at least the

difference in height above the membrane of the two termini,

more than 50 Å. It follows that with the most active of our con-

structs, with a 17 Å linker, linking two HER2 molecules in either

of these upright conformation is not possible.

Since the observed biological activity and increased binding

avidity of the short-linkered constructs prove that the bispecific

constructs do bind bivalently on cells, it follows that the HER2

moleculesmust arrange to accommodate this. For bivalent bind-

ing of 9_5_G to occur, the 9_29 epitope of HER2_I has to move

closer to the membrane, and this requires either a major confor-

mational change within the HER2_ECD (which is unlikely, as

explained below), or a major change in the orientation of the

whole HER2-ECD relative to the membrane, moving essentially

as a rigid body.

Comparison of extracellular domain conformations in various

different ErbB family crystal structures indicates that there are

very few possibilities for major conformational changes within

the HER2_ECD. The connection between subdomains I and II

and between III and IV is quite rigid: the side chain of conserved

Trp 183 of subdomain II inserting into the core of subdomain I

and the side chain of Trp 499 of subdomain IV inserting into
All rights reserved



Figure 4. Comparison of DARPin 9_26 and

9_29 Complexes with HER2-I

(A) Superposition of the HER2_I:DARPin 9_29

complex structure (HER2_I: dark blue, 9_29:

purple) onto the HER2_I:DARPin 9_26 complex

structure (HER2_I: pale blue, 9_26: magenta). The

two structures were superimposed by a least-

squares fit of the Ca positions of HER2_I residues

21–96 and 116–152 (rmsd 0.53 Å). Unliganded

DARPin 9_26 (2.9 Å resolution, pale pink) was

superimposed on the DARPin in the HER2_I:9:26

complex. A one-residue deletion in the second

loop of DARPin 9_29 is indicated by (*).

(B) Sequence differences between DARPins 9_29

(dark blue) and 9_26 (pale blue). DARPin 9_26

was superimposed on DARPin 9_29 in the

HER2_I:DARPin 9_29 complex structure. Side

chains of conserved paratope residues (blue)

and divergent DARPin residues (9_29, red; 9_26,

orange) are shown in stick representations.

See Figure S3 for a sequence alignment.
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the core of domain III severely limit the flexibility of these inter-

faces.Major conformational changeswithin ErbB receptor extra-

cellular domains appear to be limited to a rigid-body movement

of the domain I–II pair relative to the domain III–IV pair around a

pivot between domains II and III (Cho et al., 2003). HER1, HER3,

and HER4 occur in two conformational states. In the presence of

an activating ligand, their extracellular domain assumes an

‘‘open’’ conformation, similar to the default conformation of the

HER2_ECD (Ogiso et al., 2002; Liu et al., 2012), while their default

conformation in the absence of a ligand and/or dimerization

partner is a ‘‘tethered’’ conformation (Cho and Leahy, 2002;

Ferguson et al., 2003; Bouyain et al., 2005), which has so far

not been observed for HER2. The HER2_ECD constitutively

assumes an ‘‘open’’ conformation (Garrett et al., 2003).

However, a rigid HER2_ECD could easily tilt relative to the

membrane (Figures 6D and 6G). This would require flexibility in

the short peptide segment between the last disulfide-bridged

cysteine of the extracellular domain and the start of the trans-

membrane helix. Indeed, these residues are disordered in re-

ported structures of the HER2 extracellular domain and in

NMR structures of the transmembrane helix. Based on single-

molecule Förster resonance energy transfer analysis and fluo-

rescence lifetime imaging microscopy, this region in EGFR has

been proposed to be sufficiently flexible to allow the EGFR_ECD

to equilibrate between an upright position and one lying flat on

the membrane (Webb et al., 2008). Thus, tilting the ECD in

such a way that the dimerization loop points toward the mem-

brane (Figures 6D and 6G) would lower the C terminus of 9_29

(or 9_26, respectively) and raise the N terminus of G3 in such a

way that the two can be connected by a short linker.

Alternatively, a hypothetical pseudo-tethered conformation of

HER2, for which, however, there is currently no direct evidence,

would bring the 9_29 epitope into an ideal position relative to the

G3 epitope of a second HER2monomer for intermolecular cross-

linking with short-linkered constructs (Figures 6C and 6F), while

intramolecular crosslinking within a tethered monomer would

still require a 70 Å (G_x_9) to 80 Å (9_x_G) linker. Such a conforma-

tion would not interfere with DARPin binding, but would prevent

the formation of back-to-back HER2 homo- and heterodimers.
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The most important deduction from these models is that, by

linking domain I of one HER2 molecule to domain IV of another

by a short linker, the transmembrane domains of the two HER2

are forced apart. This conclusion is independent of the

pivot point utilized and independent of the exact geometry of

the HER2:DARPin:HER2 complex. The consequence of the

DARPin-induced movement of domains I and IV of two different

HER2 molecules is that it prevents the assembly of active kinase

dimers.

DISCUSSION

The results presented in this paper and the associated models of

the induced inhibited states of HER2 allow us to propose a

mechanism of the induction of cytotoxicity within the framework

of activation and inhibition of the ErbB receptor family. We pre-

sent the X-ray structures of three DARPin:target complexes,

with DARPins 9_29 and 9_26 binding to the same epitope on

subdomain I of HER2, and DARPin G3 recognizing subdomain

IV. The structures of the DARPins in complex with the cognate

receptor domain can be superimposed on the structure of the

full-length HER2 extracellular domain without any evidence for

conformational changes in the individual domains beyond

some very small local flexibility, already apparent from the com-

parison of the various structures of HER2_ECD in the Protein

Data Bank. Thus, the superposition of the DARPins on the whole

HER2 ECD is unambiguous.

Monomeric DARPins Do Not Interfere with HER2
Signaling
All tested monovalent DARPins that were used for the construc-

tion of the bispecific binders, individually or as a mixture, have

no effect on the cell survival and proliferation of cultured

BT474 cells, indicating that the monovalent DARPins do not

interfere with HER2 signaling in this HER2-addicted cell line.

Models of the putative HER2 ‘‘back-to-back’’ homodimer (Fig-

ure 6B) or of canonical heterodimers with EGFR or HER3 (not

shown), which are generally thought to represent the active

state of HER2, indicate indeed that the binding of unlinked
91, November 5, 2013 ª2013 Elsevier Ltd All rights reserved 1985



Figure 5. Distances between DARPin N and C Termini

(A) For bivalent binding to a HER2 monomer, the linker in a 9_x_G construct would need to span a distance of 130 Å (solid line), plus enough slack added to wrap

around HER2. In a G_x_9 constructs, the two termini would need to span 90 Å (broken line).

(B) To bind to a HER2 monomer in a pseudo-tethered conformation, 70 Å (9_x_G construct) or 95 Å (G_x_9 construct) would have to be bridged.

(C and D) To connect two DARPins bound to the same side of a HER2 dimer, 80 Å would have to be bridged by a 9_x_G construct, 70 Å by a G_x_9 construct.

(C) and (D) show the same dimer, rotated by 90� around the y axis.

Linker lengths in the various bispecific DARPins vary from 16.5 Å (9_5_G) to 132 Å (9_40_G), assuming a fully extended conformation (Figure S4).
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(i.e., monovalent) DARPins should not interfere with homo- or

heterodimerization, consistent with the observation that the

monovalent DARPins are not biologically active. Since the

monovalent DARPins cover both sides of the dimer, they should

interfere with the lateral association of receptor dimers to pro-

duce tetramers or higher oligomers formed by stacking the

planes defined by domains I, II, and III, as recently proposed

(Zhang et al., 2012). However, since the unlinked DARPins do

not interfere with HER2 activity, higher oligomers associating in

this specific manner cannot be required for the activity of

HER2 measured in our assays.

Activity Depends on Linker Length
When connected by short flexible linkers, the two DARPins

9_29 and G3 acquire biological activity. While monospecific

bivalent constructs, in particular G_20_G, activate HER2

signaling and have a proproliferative effect on BT474 cells,

presumably by stabilizing HER2-HER2 homodimers, the

bispecific bivalent constructs described here inhibit HER2

signaling and decrease cell viability, without affecting the

number of receptors displayed on the cell surface (R.T., M.S.,

C.J., D.C. Schaefer, G. Nagy-Davidescu, M. Göranson, A.H.,

and A.P., unpublished data). Their activity is dependent on

linker length and on domain orientation. Constructs with shorter

linkers show higher activity than constructs with longer linkers,

and constructs with N-terminal DARPin 9_29 and C-terminal

DARPin G3 (9_x_G) show significantly higher activity than

G_x_9, the opposite orientation, of the same linker length.

While for the G_x_9 orientation the inhibitory activity already

disappears with a linker length of 20 amino acids, in the

9_x_G orientation, even the construct equipped with a 40-

amino-acid linker shows some activity.

Constructs in which one of the DARPins has been replaced by

the nonbinding DARPin off7 are biologically inactive, demon-

strating the need for bivalency. Therefore, we have to conclude

that the biological activity of the bispecific constructs is indeed

due to crosslinking of HER2 molecules and not to simple direct
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steric hindrance of HER2 homo- or heterodimerization by the

DARPins.

The Linker Length Is Too Short for Both DARPins to Bind
to the Same HER2 Monomer or Dimer
The linkers of the shortest and most potent of the bispecific con-

structs tested, 9_5_G, 9_10_G, and 9_20_G, are too short to

connect the C terminus of 9_29 to the N terminus of G3 bound

to the same HER2 molecule, in either the open conformation

seen in all crystal structures of the HER2 ectodomain (Cho

et al., 2003; Franklin et al., 2004; Bostrom et al., 2009; Eigenbrot

et al., 2010; Fisher et al., 2010) or in a hypothetical pseudo-teth-

ered conformationmodeled in analogy to the tethered conforma-

tions of other members of the ErbB family (Cho and Leahy, 2002;

Ferguson et al., 2003; Bouyain et al., 2005; Li et al., 2005;

Hollmén et al., 2012; Liu et al., 2012; Ramamurthy et al., 2012).

The linkers are also too short to connect DARPins bound to the

two HER2 monomers in a putative back-to-back HER2 homo-

dimer. The observed bivalent binding, therefore, can only be

explained by crosslinking of two independent HER2 monomers,

at least one of which has to bend down (see below).

Orientation of HER2 on the Cell Surface
On the surface of intact cells, the transmembrane domain of the

receptor is constrained to the plane of the membrane, restricting

translational and rotational freedom of the receptors. Conven-

tionally, receptors of the ErbB family are depicted as standing

upright on the cell surface, with their main axis about perpendic-

ular to the plane of the membrane. However, it has been pro-

posed that a small percentage of EGFR, providing high-affinity

EGF sites, can lie flat on the surface (Webb et al., 2008), under-

lining the flexibility of the few residues between the receptor

ectodomain and the TM helices to allow this. Therefore, a tilting

of the whole ectodomain of HER2 with a pivot close to the mem-

brane has some precedent.

Nonetheless, a completely flat orientation of HER2 dimers is

inconsistent with binding of DARPins, as in the bound state
All rights reserved



Figure 6. Putative Models of Full-Length HER2 Complexed by Monovalent or Bispecific DARPins

A model of the complete structure of HER2 in complex with the two DARPins 9_29 and G3 was generated as described in Supplemental Experimental

Procedures.

(A, B, and E) Unlinked DARPins 9_29 (red) and G3 (orange) are modeled to bind to putative HER2 homo- and heterodimers and are predicted to not interfere with

receptor dimerization.

(C, D, F, and G) Bispecific DARPins with short linkers can only crosslink two HER2molecules if domain I is brought closer to the membrane through binding of the

DARPin.

(D and G) Domain I is brought closer to the membrane by pivoting the rigid extracellular domain (ECD) around a point in a short flexible peptide between the last

disulfide bridge in domain IV and the start of the transmembrane helix. This would allow bispecific DARPin 9_5_G to bind two HER2 molecules with ECDs in the

open conformation found in all structures of the HER2_ECD.

(C and F) Alternatively, a rotation around the pivot point utilized in the transition between open and tethered conformation (Arg 317) of other ErbBmembers would

yield a pseudo-tethered conformation that brings domain I closer to the membrane and allows bispecific DARPin 9_5_G to crosslink two HER2 molecules with

ECDs in a (putative) tethered conformation.

Bothmodels (B/F andC/G) enforce a large distance between the kinase domains, and both prevent further dimerization by the strong tilt of dimerization interfaces

and/or by making the dimerization loop inaccessible. Both models would also be compatible with daisy-chaining, forming higher-order oligomers.
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they would prevent a flat orientation, since DARPin epitopes

would be located between receptor and membrane. Also, since

the majority of receptors is standing upright in EGFR (Webb

et al., 2008), theremust be a dynamic equilibrium, and any bound

DARPin will shift this equilibrium away from any flat orientation.

Considering the data on EGFR, it follows for HER2 that a tilted

orientation of HER2 molecules in the DARPin-linked state is

possible, but not a completely flat one. This flat orientation,

which we can exclude, would be the only one in which the TM

helices would be able to come close enough for the kinases to

form an active dimer.

Conformational Flexibility of the HER2 Extracellular
Domain
Our experiments show that even the shortest linker, spanning

less than 17 Å in extended conformation, allows bivalent binding

of the bispecific DARPins. Since such bivalent binding is not
Structure 21, 1979–19
possible for the open, fully erect conformation of the extracel-

lular domain, something has to bend. The interfaces between

domain I and II and between domain III and IV are rigid. The

side chain of Trp 183 in cysteine-rich domain II is buried in

the core of domain I, and the side chain of Trp 499 of

cysteine-rich domain IV is buried in the core of domain III, allow-

ing only very limited flexibility. HER2_I_II and HER2_III_IV can

therefore be regarded as structurally rigid units. Only two

positions in the extracellular domain have the potential to act

as a pivot for allowing large-scale conformational changes:

either a hinge motion around the boundary residue between

domain II and III (a Lys in EGFR, HER3, and HER4, correspond-

ing to Arg 317 in HER2), which relates the open to the tethered

conformation in other ErbB family members (Figures 6C and 6F),

or more likely (regarding the probable constitutively open

conformation of HER2_ECD) a tilting of the whole ECD relative

to the membrane, relying on the flexibility of the residues
91, November 5, 2013 ª2013 Elsevier Ltd All rights reserved 1987
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between the last cysteine of domain IV and the transmembrane

helix (Figures 6D and 6G).

Interference with HER2 Dimerization and Activation
Either of the two discussed putative conformational changes

captured by the bispecific DARPins leads to a situation where

the back-to-back dimerization interface of HER2 is obstructed.

In any pseudo-tethered conformation, this obstruction is

intramolecular; in any of the conceivable tilted conformations,

it is due to the enforced proximity of the dimerization interface

to the membrane. Either model, and all reasonably conceivable

geometric variations of the models, would result in bringing

the C terminus of DARPin 9_29 closer to the N terminus of

DARPin G3. As the transmembrane helices cannot be

pulled out of the plane of the membrane, this forces the mem-

brane insertion points and therefore the transmembrane and

intracellular kinase domains apart, independent of the pivot

point.

For maximal inhibition, formation of larger oligomers formed

by daisy-chaining may be required, where every receptor mono-

mer is bound to two bispecific DARPins and both DARPin

epitopes on HER2 are occupied. For linker lengths exceeding

20 amino acids, alternative, intramolecular binding modes may

start to compete with the intermolecular bindingmodes enforced

by the short linker, explaining their overall lower biological

activity.

Conclusions
The contrast between the biological inertness of the monovalent

DARPins alone or in combination, the stimulation of HER2

signaling by monospecific bivalent DARPin construct G_20_G

and, on the other hand, the potent inhibition of HER2 signaling

by bispecific DARPin constructs connected by a minimal linker

is intriguing. Trivial explanations for the inhibitory activity of the

bispecific constructs, such as receptor downregulation or direct

steric hindrance of receptor dimerization, could be excluded

(R.T., M.S., C.J., D.C. Schaefer, G. Nagy-Davidescu, M. Göran-

son, A.H., and A.P., unpublished data), leaving a model where

the steric constraints imposed by the membrane anchoring of

the receptors play an important role in forcing apart the trans-

membrane helices of two HER2 monomers connected by the

bispecific DARPin constructs.

The large fraction of the HER2 dimer surface covered by the

biologically inert monovalent DARPins challenges models that

postulate a need for lateral tightly packed HER2-oligomers for

certain aspects of HER2 signaling in the cell line described

here. The strong inhibitory effect of the bispecific DARPin con-

structs makes them an interesting starting point for future tumor

targeting constructs directed against HER2-addicted cancer

cells. A detailed analysis of their effects on different aspects of

downstream signaling is presented in a separate publication

(R.T., M.S., C.J., D.C. Schaefer, G. Nagy-Davidescu, M. Göran-

son, A.H., and A.P., unpublished data).

In summary, the engineering of binding molecules that bispe-

cifically target HER2 at domains I and IV, connected by a linker

not commensurate with intramolecular binding or binding to

back-to-back complexes, has proven to be a very promising

way to expand the arsenal of molecular targeting of cancer

cells that are addicted to this receptor. In this context, DARPins
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might be particularly promising, as they can be easily engi-

neered in a variety of molecular orientations and equipped for

prolonged systemic circulation in order to extend their

outstanding in vitro potency for in vivo studies (R.T., M.S.,

C.J., D.C. Schaefer, G. Nagy-Davidescu, M. Göranson, A.H.,

and A.P., unpublished data).

EXPERIMENTAL PROCEDURES

Cloning, Expression, and Purification of DARPins

All DARPins were purified essentially as described previously (Zahnd et al.,

2010). Proteins were overexpressed in E. coli XL1-Blue and purified via

their N-terminal MRGSH6 tag with nickel-nitrilotriacetic acid superflow

resin (QIAGEN). For cloning of bispecific constructs, the DARPin ORFs

were digested with BamHI and HindIII (New England Biolabs) and ligated

into compatible expression vectors pQiBi, coding for different flexible

(G4S)n linkers. This results in the connecting.AEILQKL(G4S)nRSDLGKKLL.,

where the first underlined sequence is from the C-cap of the N-terminal

DARPin, the second underlined sequence is from the N-cap of the C-terminal

DARPin and n indicates the number of pentapeptides present in the flexible

linker.

Cell Culture

BT-474 cells were obtained from the American Type Culture Collection

(ATCC HTB-20). Cells were grown in complete RPMI 1640 medium (Sigma-

Aldrich) supplemented with 10% (v/v) heat-inactivated FCS (PAA GmbH)

and 100 U/ml penicillin/streptomycin (Sigma) in a humidified incubator with

5% CO2.

Flow Cytometry

Per assay, 1 3 106 cells were incubated with the respective fluorescently

labeled DARPins at the indicated concentrations in 100 ml PBS_BA (PBS,

0.2% NaN3, 1% BSA). After incubation, cells were harvested by centrifugation

(8003 g, 30 s, 4�C) and washed twice using 1 ml PBS_BA, each. Flow cytom-

etry was performed on a Cyflow space system (Partec). Recorded events were

gated for FSC/SSC of single viable cells. Fluorescence data were analyzed

using the FlowJo software.

Dissociation experiments were performed as described in (Tamaskovic

et al., 2012). In brief, aliquots of 1 3 106 cells were preincubated with

DARPin-AlexaFluor488-conjugates at 100 nM in PBS_BA for 1 hr at room tem-

perature. Cells were washed twice as described above and dissociation was

allowed to proceed in the presence of unlabeled DARPin for the times indi-

cated shaking at room temperature, followed by washes and flow cytometry

measurements as described above.

Cell Viability Assays

BT474 cells were seeded at a density of 10,000 cells/cm2 in 96-well-plates

(Nunc). After 24 hr, DARPins (or trastuzumab as control) were added and cells

were incubated for another 72 hr. Cells were then incubated with 50 ml/well 2,3-

bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT;

Roche) for 4 hr at 37�C. Absorbance was measured at 450 nm and expressed

as percentage of the untreated controls.

Expression in Insect Cells

Recombinant HER2-ectodomains carrying an N-terminal melittin signal

sequence and an N-terminal His6 tag were expressed in Spodoptera frugi-

perda (Sf9) cells. Baculoviruses for infection of Sf9 cells were generated using

theMultibac system as described (Fitzgerald et al., 2006). Sf9 cells were grown

to a density of 4 3 106 cells/mL and coinfected with the respective virus at a

MOI of 1. Then 72 hr post infection, cells were harvested by centrifugation

(30 min, 5,000 g, 4�C) and the cleared medium was subjected to immobilized

metal ion affinity chromatography (IMAC) purification with Ni-NTA Superflow

(QIAGEN) purification resin.

X-Ray Crystallography

HER2_I and HER2_IV were expressed and purified as described above.

After preincubation with DARPins 9_26_Mut5, 9_29_Mut5 or G3 at equimolar
All rights reserved



Structure

Structural Basis of Cytotoxic HER2-Binding DARPins
concentrations, complexes were purified via size exclusion chromatography

on a Superdex 200 HiLoad 16/60 column equilibrated with TBS150 (PBS,

150 mM NaCl). Eluted protein was concentrated to 14 (9_26/HER2_I),

8 (9_29/HER2_I), or 9 (G3/HER2_IV) mg/ml using Millipore Amicon Ultra

10K centrifugal concentrators. Crystals of the complexes formed in sitting

drops mixed with two parts protein solution and one part mother liquor.

The mother liquor contained 0.2 M NaCl, 0.1 M phosphate citrate (pH 4.2),

and 20% PEG 8000 for 9_26/HER2_I; 0.2 M ammonium acetate (pH 5.6),

0.1 M sodium citrate, 30% (w/v) PEG 4000 for 9_29/HER2_I, or 0.05 M

succinic acid and 29% ammonium sulfate (pH 4.0) for G3/HER2_IV, respec-

tively. Crystals grew within 3 days (9_29/HER2_I), 3 weeks (9_26/HER2_I) or

4 weeks (G3/HER2_IV), respectively. They were then transferred to a

cryoprotectant solution containing 20% glycerol. Data were collected using

the PILATUS 2 M detector system on the PXIII beam line at the Swiss

Light Source (Paul Scherrer Institute) and processed using the program

XDS (Kabsch, 2010). The structures were solved by molecular replacement

using PHASER MR (McCoy et al., 2007) from within the CCP4 package

(CCP4, 1994). Model building was carried out by using the program COOT

(Emsley et al., 2010). The structures were refined using PHENIX (Adams

et al., 2010). Stereochemical properties were analyzed with MOLPROBITY

(Davis et al., 2007) and structure figures were generated in PYMOL (http://

pymol.org).

Statistical Analysis

Results from cell viability assays and ELISA experiments were expressed

as means from triplicate measurements in bar graphs. Error bars

indicate SD.

ACCESSION NUMBERS

The HER2_I/9_29, HER2_I/9_26, and HER2_IV/G3 structures have been

deposited in the Protein Data Bank (http://www.pdb.org) under the codes

4HRL, 4HRM, and 4HRN, respectively.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and four tables and can be found with this article online at

http://dx.doi.org/10.1016/j.str.2013.08.020.

AUTHOR CONTRIBUTIONS

C.J., J.S., R.T., M.S., and A.P. designed research; C.J., J.S., and M.S. per-

formed research; C.J., J.S., A.H., and A.P. analyzed data; and C.J., A.H.,

and A.P. wrote the paper.

ACKNOWLEDGMENTS
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