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A model to quantitate the principal aspects of mul-
tivalent binding was developed. It describes the ran-
dom distribution of an immobilized component (the
ligand) taking into account local densities. The bind-
ing of a bivalent molecule (the analyte) to the ligand is
described as occurring in two steps, the second of
which is driven by the local concentration of neigh-
boring ligands. The model was used to simulate the
kinetics of bivalent binding in surface plasmon reso-
nance biosensors such as BIAcore. The simulations are
compared with measured data. The simulation quan-
titates the influence of bivalent binding on the sensor
signal, as a function of ligand density, analyte concen-
tration, and binding site distance. Such simulations
will be helpful for understanding and designing exper-
iments to assess avidity effects as well as for develop-
ing molecules with high avidity. Furthermore, they
help to analyze the inherent complexity in seemingly
simple sensorgrams. © 1998 Academic Press
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Multivalent binding is an important, inherent fea-
ture of many biological systems. On the other hand,
the intrinsic affinity of a single binding site is often
the quantity of interest. This discrepancy has been
recognized for decades in the determination of the
affinity of antibodies, which are at least bivalent and
thus behave different in solution and solid-phase
assays.

The majority of efforts to determine true affinities
have so far been directed to the reduction of bivalent
binding in the experimental set-up to simplify data
interpretation. For example, an antigen can often be
made monomeric, and for an antibody, monovalent
Fab and scFv fragments can be used. However, the

aim of the work presented here is to understand the
influence of bivalence on the binding. This is impor-
tant for maximizing binding to cellular surfaces in
therapeutic settings and for protein engineering, in
order to optimize the geometry for multivalent pro-
teins used as analytes or ligands. Thus, we primarily
wish to study factors such as ligand density and
binding site distance, rather than propose to extract
intrinsic affinities from multivalent binding experi-
ments. For this purpose, we have set up a micro-
scopic kinetic model and applied it to the simulation
of multivalent binding kinetics. The kinetics of mul-
tivalent binding to ligands fixed on a surface or in a
three-dimensional network is of direct biological rel-
evance, for example, when antibodies bind to epitopes
on surfaces such as viruses and cells.

Bivalent and multivalent recombinant antibody
fragments, named miniantibodies, have become avail-
able by protein engineering, and they mimic the natu-
ral multivalency despite being much smaller (1, 2). In
this respect the question arises how the size of the
bivalent molecule influences its avidity and how the
avidity effect correlates with the ligand density on the
surface. The quantitation of these effects is important
for the comparison of different molecules and the pre-
diction of their behavior.

Biosensors, measuring time-resolved kinetics on a
surface or in a layer, allow questions of size, valency,
and ligand density to be experimentally addressed. The
presented simulations were performed in the context
of data obtained with optical biosensors such as the
BIAcore (BIACORE, Sweden) (3), the BIOS (ASI, Swit-
zerland), and the IAsys (Fison, United Kingdom) in-
struments, from which the nomenclature and data vi-
sualization were derived. These instruments detect the
change of refractive index in a small layer above a
surface, which correlates with the absolute mass of
protein present in this layer, by surface plasmon reso-
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nance (SPR),2 optical waveguide lightmode spectros-
copy (OWLS), or resonant mirror technology, respec-
tively. The change of protein concentration in this layer
is, in the case of the BIAcore, monitored in relative
resonance units (RU) versus time. Nonetheless, the
simulations can be adapted to other techniques such as
total internal reflection (TIR) in general and ELISA
measurements.

The main concern regarding the quality of the inter-
action data obtained with SPR biosensors has been
mass transport limitation. This problem has been ex-
tensively studied from a theoretical point of view (4–
6). In general, one can conclude that for the measure-
ment of intrinsic binding constants the ligand should
be immobilized to such a low level that mass transport
and multivalent binding do not interfere with a simple
model. In this idealized case, only the statistical factor
of two binding sites per analyte would have to be taken
into account (7). However, under such conditions the
multivalent binding, which is the quantity of interest
in the present study, cannot be evaluated.

Attempts to calculate the influence of bivalent bind-
ing have been made before, mainly in the context of
antibody binding to surfaces. In an early and often
cited approach (8), the equilibrium constants of a biva-
lent molecule are calculated, taking into consideration
the spatial relationship between the two binding sites.
To be applicable, this model requires that the number
of free sites within reach for the second binding step is
greater than unity. Since such high immobilization
densities are difficult to achieve with proteins, this
requirement as well as the lack of a kinetic description
unfortunately prevents its application to biosensor
data, and the same restriction holds for the application
of related models (9). Other bivalent binding models
describe experimental data such as cell surface recep-
tor binding (10), binding to column matrices (11), and
total internal reflection microscopy (12), but again can-
not be transferred to a time-resolved flow system, as
they do not describe the full kinetics and the ligand
density. Spatial distance of the binding sites and fixed
ligands in a one-dimensional array have been used in
models to calculate the exclusion effect and total va-
lency of a polymer (13, 14). In the work presented here,
the kinetics of a binding interaction is simulated in a
flow system, taking into account ligand density and
size of the analyte.

MATERIALS AND METHODS

The BIAcore instrument. Although the simulations
described in the following section are useful for other
data acquisition techniques as well, they are exempli-

fied and visualized according to the principle and data
display of the BIAcore instrument (BIAcore). The heart
of the BIAcore is a small flow cell connected to an
optical unit. The flow cell encloses approximately 60 nl
with an active area of 1.1 mm2 and a height of 50 mm
(3). The active area is composed of an approximately
100-nm-thick dextran layer which is linked to the un-
derside of the flow cell facing the optical unit. Protein
and small molecule ligands can be coupled to the dex-
tran layer, which has been modified to carry carboxyl
groups, using standard coupling chemistry. The optical
unit detects an intensity change in a totally reflected
light beam due to surface plasmon resonance. Depend-
ing on the refractive index of the solution and the mass
of protein, present in the dextran layer, a light beam
reflected from the surface of the flow cell is modulated
via its evanescent field extending into the layer. This
leads to a time-dependent signal displayed in relative
resonance units versus time. Although not used in
general due to experimental uncertainties, the reso-
nance units can be approximately converted to mass of
protein in the dextran layer by the relation 1 RU ' 1
pg/mm2 (15). Combining this with the approximated
thickness of 100 nm for the dextran layer, the RU can
be transformed to molar concentrations according to
Eq. [1]:

conc ~mol/liter! >
conc ~RU!

100 3 Mr
. [1]

The simple monovalent rate equation. So far, most
of the kinetic SPR biosensor data have been evaluated
by a simple first-order rate equation where the analyte
A, which is by definition the molecule in solution, in-
teracts with the immobilized ligand L according to the
chemical reaction

A 1 L º AL

The rate equation for this reaction is (c0 denoting ini-
tial concentrations):

dcAL

dt 5 kass c0
A ~c0

L 2 cAL! 2 kdiss cAL. [2]

In this case, the analyte concentration of the injected
solution c0

A, which is continuously replaced, is treated
as a constant. The term c0

L 2 cAL represents the free
ligand concentration. The determination of c0

L requires
the knowledge of the volume of the dextran layer as
well as the amount of ligand. Both values are difficult
to determine. Therefore, the standard evaluation (16)
avoids the direct calculation of this concentration.
However, for the simulations described here, the con-

2 Abbreviations used: RU, resonance units; SPR, surface plasmon
resonance; ELISA, enzyme-linked immunosorbent assay.
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version given in Eq. [1] is accurate enough to not in-
fluence the principle and trends of the data.

The monovalent rate equation with mass transfer.
As has been noted by several authors (4–6), mass
transport limitation can be a problem in biosensor
measurements. An important and commonly observed
consequence of mass transport limitation is the rebind-
ing phenomenon, in which dissociated analyte is not
washed out but binds to another close-by ligand, lead-
ing to an artificially slowed off-rate. To compare the
simulations of bivalent binding with mass-transport-
limited simulations, we applied a simple model where
the flow cell is divided into two compartments: first, the
dextran layer where the reaction takes place, referred
to with subscript R; and second, the volume above the
dextran layer where the buffer is exchanged, referred
to with subscript 0. The flow rate within the dextran
layer can be slower than the overall flow rate according
to hydrodynamic laws. Assuming laminar flow, the
analyte concentration for the reaction cR

A differs from
the initial, injected concentration c0

A by the buffer dis-
placement in the dextran layer along the cell length,
which can be neglected in the case of the BIAcore, as
well as a transfer perpendicular to the dextran layer,
which is dependent on the diffusion of the analyte and
the geometry of the flow cell. As before, the buffer
exchange above the dextran layer is treated to be infi-
nitely fast. Thus, two chemical equations apply: A ^
Adextran, and Adextran 1 Ldextran ^ AL.

Equation [3] describes the complex formation, as
does the simple rate equation (Eq. [2]), but the concen-
trations are now given for the dextran layer volume,
where the reaction takes place. Coupled to the complex
forming rate equation is a second rate equation (Eq.
[4]), describing the concentration change of the analyte
A, taking into account the one-dimensional flow rate
(flowx) in the layer compartment and cell length
(lengthx) as well as a transfer constant (ktrans) from the
flow compartment to the layer compartment:

dcR
AL

dt 5 kass cR
A ~c0

L 2 cR
AL! 2 kdiss cR

AL [3]

dcR
AL

dt 5 2 kass cR
A ~c0

L 2 cR
AL! 1 kdiss cR

AL

1
flowx

lengthx
~c0

A 2 cR
A! 1 ktrans ~c0

A 2 cR
A! [4]

ktrans can be roughly approximated independently
from the flow rate, using Fick’s first law and by
assuming a linear concentration gradient from top
to bottom of the diffusion layer of height h, with cR
being the average concentration at half height. By
doing so, ktrans can be related to the diffusion con-

stant D multiplied by the contact area of the layers,
divided by the volume of the reaction layer, and
divided by its half height, which gives 2D/h2. Thus,
for bovine serum albumin (Mr 67 kDa) with D 5
6.1 3 10211 m2 s21 (17) and a layer thickness of
100 nm, the transfer rate is approximated at 1.2 3
104 s21. As the diffusion-limited layer may be thicker
than the dextran matrix (4) or the flow may not be
laminar, transfer rates ranging from 102 to 106 s21

have been used in our simulations for a protein of
100 kDa.

The treatment of bivalent binding in solution. For
bivalent binding a two-step binding mode with two
bimolecular reactions is assumed, which is described
by two chemical reactions. The bivalent analyte, which
is injected, is named AA and the complexes formed
with one or two immobilized ligands are named AAL
and AALL, respectively.

AA 1 L ^ AAL

AAL 1 L ^ AALL

Other binding modes such as the formation and disso-
ciation of a ternary complex may occur. For antibodies,
binding proteins with an equilibrium dissociation con-
stant typically in the range of 1026 to 1029 M and a
ligand concentration typically between 0.05 and 1 mM,
the two-step mechanism should apply to most reac-
tions. This can be described by two reactions:

dcAAL

dt 5 kass1 2 c0
AA ~c0

L 2 cAAL 2 2cAALL!

2 kdiss1 cAAL 2
dcAALL

dt [5]

dcAALL

dt 5 kass2 cAAL ~c0
L 2 cAAL

2 2 cAALL! 2 2 kdiss2 cAALL . [6]

The concentration and c0
AA and cAALL are multiplied by

a factor of two to account for the two binding sites per
molecule. In other approaches this factor is frequently
not present and thus implicit in either the association
constant or concentration terms. To ensure that these
equations, which formally describe a reaction in solu-
tion, can be fitted to experimental data with immobi-
lized ligands, different association and dissociation
rate constants are usually used for each equation (18)
resulting in four parameters. However, both rate con-
stants obtained from such fits can differ significantly
from the intrinsic rate constant and no molecular in-
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sight is provided, since no geometric parameters are
used. Thus, we developed a new model.

The treatment of bivalent binding in a rigid matrix.
The model for bivalent binding has two parts: first, a
description of the ligand distribution; and second, a
description of the binding reaction. The following equa-
tions refer to a layer typically present in biosensors,
but can easily be transformed to describe the reaction
on a surface such as an ELISA plate. An exact descrip-
tion of the physicochemical properties of the layer as
well as its influence on molecules is difficult and is the
topic of an ongoing controversial discussion (6, 18). For
the model presented, it is assumed that the matrix fills
uniformly a thin layer of known thickness, is rigid as a
first approximation (but see below), and does not inter-
fere with the interaction. We realize that any deviation
of the real system from these assumptions will show up
in any fittable parameter. Since a complete molecular
description of the dextran layer is not available, we
believe that these simplifying assumptions still pro-
vide insight into the main factors involved in multiva-
lent binding. The ligand is attached to the matrix and
therefore fixed in space. This assumption as well as our
aim to use only one intrinsic association and dissocia-
tion rate constant for multivalent binding events re-
quires the modification of Eq. [5] and Eq. [6].

At concentrations typically used for immobilization,
the average distance of ligands is too large to allow all
ligands to participate in a bivalent binding of the ana-
lyte. To account for this fact mathematically, first the
whole volume VR where the reaction takes place (the
dextran layer) is quantitized into volumes VS calcu-
lated as spheres with a radius equal to the functional
distance of the two binding sites of the analyte (Fig. 1).
These volumes are treated as to fill the reaction volume
VR uniformly. Second, the immobilized ligands are ran-
domly distributed in the spheres. The proportion of
spheres containing one ligand or more than one ligand,

respectively, can be calculated from stochastic theory.
This is an approximation of the more complex calcula-
tion of the distance distribution of ligands in space. The
spheres with more than one ligand can either be
treated the same or be split into spheres with two,
three, and so forth ligands. For most cases, already the
number with three ligands can be neglected. The num-
ber of occupied spheres can be calculated using a bino-
mial distribution. Given the number of ligands n0

L, the
number of spheres ns, and the number of ligands in the
sphere k, the probability for this event is:

P~sphere with k ligands! 5 Sn0
L

k D S1
nsDk S1 2

1
nsDn0

L 2 k .

[7]

The binomial distribution was approximated with a
Poisson distribution, since the probability is small and
the number of events large and the error of this ap-
proximation is negligible.

P~sphere with k ligands!

5

Sn0
L

1
nsD k

k! e 2 n0
L 1

ns 5
~c0

L Vs!
k

k! e 2 c0
LVs . [8]

The right-hand side of Eq. [8] is obtained, since the
number of spheres ns equals the reaction volume VR
divided by the volume of a sphere Vs (ns 5 VR/VS), and
the number of ligands divided by the reaction volume
equals the ligand concentration. These probabilities
allow us to calculate the fraction of sites which can be
bound i times multivalently, or so to speak a multiva-
lent binding factor, named multifac:

multifaci 5
P~spheres with $i ligands!

P~spheres with $ 1 ligand!
. [9]

Using the Poisson distribution this equation can be
rewritten to

multifaci 5

1 2 O
k 5 0

i 2 1~c0
L Vs!

k

k! e 2 c0
LVs

1 2 e 2 c0
LVs

. [10]

For simplicity in the following section, spheres with
two or more than two ligands are treated as spheres
with two ligands. Since spheres, and thus ligands, are
initially separated into sites able to bind either mono-
valently or bivalently, two different reaction schemes
can be applied with two different concentrations.
Hence, the concentrations of ligands which can be

FIG. 1. Scheme of a sphere with an antibody as analyte. The access
radius r is a functional term and is related to the distance between
the two binding sites of the bivalent molecule (see text). The access
radius might become larger than the apparent binding site distance,
due to movement of the bound ligand and its support.
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bound only monovalently c0
Lm and those which can be

bound bivalently c0
Lb are calculated. The two reaction

schemes for the monovalent only and the potential
bivalent interactions are:

AA 1 Lm ^ ALm

AA 1 Lb ^ AALb

AALb 1 Lb ^ AALLb

Here, Lm denotes a ligand which can be bound only in
a monovalent state, because the next neighbors are too
far away, and Lb refers to a ligand which can be bound
simultaneously with a further ligand close by. The
concentration of ligands which participate only in mo-
nomeric binding can be calculated using the probabil-
ity derived above:

c0
L 5

ns

VR
P~sphere with one ligand!

5
1
VS

P~sphere with one ligand! . [11]

The concentration of ligands which can undergo biva-
lent binding is the difference from the total ligand
concentration:

c0
Lb 5 c0

L 2 c0
Lm . [12]

For the purely monovalent reaction, where the analyte
can reach only one ligand, the rate equation is

dcAALm

dt 5 kass 2 cAA~c0
Lm 2 cAALm! 2 kdiss cAALm . [13]

For the bivalent reaction scheme, the rate equation for
the second step becomes more complicated, compared
to the reaction in solution. The model needs to take into
account that for the second step toward the bivalent
binding, the overall concentration of the analyte in the
solution becomes irrelevant and a local concentration
applies, with one analyte binding site and one or more
additional free ligands per sphere volume. For the
bivalent case with two ligands in a sphere, one of which
is unoccupied and ready for the second binding event,
the relevant molecular concentration for this second
closure is 1/Vs for the analyte and 1/Vs for the ligand.
To correct the units to mol/liter, a division by Avo-
gadro’s number is further required. However, this rate
expression applies only when one ligand is occupied
and one ligand is free. Thus, two probability factors
need to be introduced: cAALb/c0

Lb for one ligand occupied

and cLbfree/c0
Lb for one place free. Taken together, the

coupled rate equations are

dAALb

dt 5 kass 2 cAA~c0
Lb 2 cAALb 2 2 cAALLb! 2 kdiss cAALb

2
dcAALLb

dt [14]

dcAALLb

dt 5 kass

1
Vs NA

cAALb

c0
Lb

1
Vs NA

3
c0

Lb 2 cAALb 2 2 cAALLb

c0
Lb 2 2 kdiss cAALLb . [15]

The bivalent case can easily be extended to higher
orders of binding. For an i times valent binding, i
differential equations are required. The local concen-
tration after the second binding step is then calculated
by (i 2 1)/Vs.

RESULTS

The multivalent factor. A new description for the
distribution of ligands was developed. By subdividing
the reaction space into spheres, an easy to use stochas-
tic formula for the distribution of ligands was obtained.
A multivalent factor was derived (Eq. [10]), which gives
the probability that an analyte binds to a ligand which

FIG. 2. Dependence of the multivalent factor (multifaci52) for a
bivalent analyte molecule on binding site distance r and immobi-
lized ligand concentration. The multivalent factor gives the frac-
tion of immobilized ligands, which are able to be part of a bivalent
complex. The ligand density is given in relative resonance units
for a 30-kDa protein by using the formula conc [mol/liter] ' conc
[RU] 3 0.01 3 Mr

21.
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is located such that a second binding is possible. This
multimeric factor is dependent on the ligand density,
as well as on the access radius, which describes the
volume swept out by the second binding site once the
first has bound to an immobilized ligand. Figure 2
illustrates the contribution of radius and ligand den-
sity to the multivalent factor for a bivalent molecule.
For convenience the ligand density is given here in
resonance units of the BIAcore instrument for a 30-
kDa protein, which are easily transformed to mol/liter
units by Eq. [1]. Given an estimation about the access
radius, this plot allows one to judge to what extent
measurements are influenced by bivalent binding.

Correlation of model and experiments. To investi-
gate whether the model correlates with experimental
measurements, an anti-His-tag murine monoclonal
IgG2b antibody, named 3D5 (19), and a monomeric as
well as a dimeric C-terminal His-tagged protein (20)
were chosen as a model system. The protein with one
His-tag was a single-chain Fv fragment with a molec-
ular weight (Mr) of 27 kDa. The protein with two His-
tags was the homodimeric yeast citrate synthase with
a Mr of 50 kDa for the monomer. The molecular weight
of the antibody was approximated with 150 kDa, and
its two binding sites were treated independently. The

anti-His-tag antibody was coupled at increasing con-
centrations to a BIAcore sensor chip surface. The final
coating densities obtained were 1100, 2400, 6767, and
10,000 RU. The association and dissociation rate con-
stants of His-tag binding by the antibody were deter-
mined with the monomeric protein in a series of mea-
surements at concentrations ranging from 100 to 1600
nM at the lowest coating density of 1100 RU and a flow
rate of 30 ml/min to minimize mass transfer limita-
tions. These measurements resulted in a kass of 2.2 3
105 M21 s21 and a kdiss of 0.075 s21 obtained by a global
fit (20). For comparison with simulations, three mea-
surements were performed on all four surfaces. First,
the monomeric protein was measured at a concentra-
tion of 500 nM (Fig. 3A). This measurement provides
information about mass transport limitation and re-
binding. Second, the dimeric His-tagged protein was
measured at two concentrations of about 50 nM and 1
mM. Thus, in the graph two concentrations as well as
four coating densities are shown (Fig. 3C).

Simulations of the differential equations for mono-
valent (Eq. [2]) and bivalent binding (Eqs. [13], [14],
and [15]) were performed with the program ISIM (21)
employing a fifth-order Sarafyan–Runge–Kutta algo-
rithm with a maximum time step of 0.01 s. As the

FIG. 3. Measurement and simulation of monovalent and bivalent binding of His-tagged proteins to an immobilized anti-His-tag antibody
as seen on a BIAcore instrument. The antibody was coated to give 1100, 2400, 6767, and 10,000 RU. The rate constants used for simulation
were previously determined from a system with 1:1 interaction. (A) Measurement of a monomeric 27-kDa His-tagged protein. (B) Simulation
of the experiment seen in A, using a first-order rate equation (Eq. [2]). (C) Measurement of a dimeric His-tagged protein of 101 kDa at two
concentrations of (—) 50 nM and (- - -) 1 mM. (D) Simulation of the experiment seen in C using the presented model (Eqs. [14] and [15]) with
an access radius of 11 nm (see text). The monomeric protein probably contains a small fraction of dimers, explaining why the curves in A do
not return to baseline and the crossover seen in C at the highest immobilization density is caused by an incomplete regeneration.
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calculations are based on concentrations, but the sig-
nal of the BIAcore is given in resonance units, the
coating density was transformed to molar concentra-
tions and the final signal back to RU according to Eq.
[1]. Concentrations in the simulation were constrained
to positive values.

For the simulation of the monovalent binding (Fig.
3B) all parameters were predetermined by experimen-
tal values. For the simulation of the bivalent binding
the access radius had to be varied. According to the
X-ray structure of the homologous porcine citrate syn-
thase (PDB: 4 cts) (22) the distance between the C-
termini is 3.1 nm. However, a radius of this size results
in mainly monomeric binding in the simulation and
does not correlate with the experimental data. Since
the His-tagged protein (the analyte) is bound by an
immobilized antibody (the ligand), the access radius is
likely influenced by the size and flexibility of the anti-
body. Therefore, a radius of 11 nm was chosen, as it
reproduced best the shape of all curves (Fig. 3D). The
access sphere calculated from molecular dimensions is
extended by the molecular displacement of the ligand
which only requires that the rotational correlation
time and any diffusion of the complex with its dextran
matrix is shorter than the average lifetime of the com-
plex. Thus, the interpretation of the access radius
should not be taken as a static geometric measure,
since any flexibility in the dextran network and ligand
linkage may increase the access radius, regardless of

the binding site distance in the bivalent analyte. De-
spite not directly reproducing geometric properties
such as molecule size and orientation, the model repro-
duces well the key elements of the experimental data
over a wide range of coating densities as well as ana-
lyte concentrations. As seen in both the monovalent
and bivalent case, the absolute signal is not satisfacto-
rily reproduced. This might be explained by the expo-
nentially decaying detection sensitivity with distance
from the surface as well as nonlinearities in the mass
detection, both making the conversion of resonance
units to concentrations not straightforward.

Dissection of binding. According to the model de-
scribed above, three molecular species contribute to
the measured signal in the case of bivalent binding:
monovalently bound analyte in a ‘‘monovalent’’ sphere
(AALm), monovalently bound analyte in a ‘‘bivalent’’
sphere (AALb), and bivalently bound analyte in a
‘‘bivalent’’ sphere (AALLb). In a monovalent sphere
only one ligand is present, whereas in a bivalent
sphere the analyte can reach another ligand. In the
simulation, the concentration of these can be looked
at separately. A dissection of the simulation (Fig. 3D)
is given in Fig. 4. The time course of the three com-
ponents is plotted for two concentrations (50 nM
and 1 mM) as well as for two coating densities (1100
and 10,000 RU). At the low coating density of the
ligand the major fraction of the binding sites is mono-

FIG. 4. Time course of ( z z z ) monovalently bound species in a monovalent sphere (one ligand in a sphere), of (- z -) monovalent bound species
in a bivalent sphere (two ligands in a sphere), and of (- - -) bivalent bound species at two concentrations and two coating densities as seen
in the simulation for the dimeric protein in Fig. 3D. (A) 50 nM protein concentration, 1100 RU coating density. (B) 1 mM, 1100 RU. (C) 50
nM, 10,000 RU. (D) 1 mM, 10,000 RU.
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valent. As expected, the equilibrium concentration of
the monovalent binding (cAALm) is higher than the
bivalent binding (cAALLb) at the low ligand density
(Figs. 4A and 4B), while the reverse is true for the
higher ligand concentration (Figs. 4C and 4D). When
compared at constant ligand density (Fig. 4A com-
pared to 4B, and Fig. 4C compared to 4D), the equilib-
rium of the bivalently bound concentration (cAALLb)
is reached faster in the case of the higher analyte
concentration, but both high and low analyte concen-
trations end up at the same level of resonance units,
since all bivalent sites are saturated. In the case of the
high coating density nearly all sites can be bound
bivalently. Since in this case a significant part of
spheres carries more than two ligands, our simulation,
which takes into account only one ligand for the second
binding step, becomes a crude approximation. It is
possible that additional steric requirements may pre-
vent access to multiple ligands. In the case of the low
analyte concentration (Fig. 4C), the bivalently bound
component clearly dominates. At the high analyte con-
centration some monovalently bound component
(cAALb) can be seen as well as an unexpected dip in the
bivalently bound species (Fig. 4D). This is caused by
the competition of binding of two monovalently bound
molecules with the binding of one bivalently bound
molecule, due to the high analyte concentration. Apart
from the latter case, monovalently bound molecules in
a bivalent sphere are hardly detected.

Comparison of the new model with a currently used
model. For the empirical evaluation of bivalent bind-
ing two differential equations might be used in the
form of Eq. [5] and Eq. [6], which treat the two-step
binding process as if completely free in solution, but
with different rate constants for each step. Thus, up to
four parameters are required, if no constraints are
used. Unfortunately, this conventional model is not

very informative about the processes underlying the
observed curves. Such a model, in which constraints
according to the known relations between the rates
were applied, was compared with the fixed ligand
model presented here. We tested how well the mea-
sured data at 50 nM and 1 mM analyte concentrations
injected on the 1100 RU surface were reproduced. For
the conventional approach the measured data were
simulated using Eq. [5] and Eq. [6] or fitted with stan-
dard fitting software (BIAevaluation 3.0), in which the
calculation for the second step was performed in reso-
nance units. In the latter case a global fit was used
with a free maximum signal for each curve, which
corresponds to using the ligand density as a free pa-
rameter, and free individual bulk effects, which allows
for a baseline shift. However, two alternative sets of
constraints were imposed. Either the association and
dissociation rate constants for both steps in the solu-
tion model (Eq. [5] and Eq. [6]) were set to the values
previously measured with a monomeric analyte or only
the first step (Eq. [5]) was set to these values, while the
rate constants for the second step (Eq. [6]) were fitted.
As expected and demonstrated in Fig. 5A, it was im-
possible to fit the data. With all rate constants con-
strained, the total off-rate is close to zero, as all mole-
cules bind bivalently and switch only between the first
and second differential equation. With only the first
step constrained, nonphysical rate constant values had
to be selected for the second step. With completely free
choice of rate constants, a satisfactory fit was obtained
(data not shown). The rate constants determined in the
latter case, however, deviated significantly from the
data determined with a monomeric ligand. Introducing
mass transfer limitation into a monovalent binding
according to Eq. [3] and Eq. [4] did not result in a
satisfactory fit either (data not shown). This demon-
strates that there are cases where the free, four-pa-

FIG. 5. Comparison of fits to experimental data using a standard model (Eqs. [5] and [6]) for bivalent binding (A) and the presented model
(Eqs. [14] and [15]) with fixed ligands (B). The solid line in both panels represents the measured data on a 1100 RU surface obtained at 50
nM (lower curve) and 1 mM (upper curve) analyte concentration. (A) Global least-square curve fit using a solution model with individual free
maximum signal and free individual bulk effect (baseline): (- - -) all rate constants set to predetermined values obtained from the monovalent
experiment; ( z z z ) only the first equation set to the predetermined rate constants. (B) Manual fit of measured data using the fixed ligand
model with predetermined rate constant values for both rate equations. A 14-nm access radius was chosen and an additional global scaling
factor of 0.58 was used for both curves.
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rameter fit (with two independent on- and off-rates) is
very difficult to interpret in meaningful terms.

For the fixed ligand model, all rate constants as well
as the ligand density are determined by the values
known from experiments of a monomeric ligand, and a
satisfactory reproduction of the experimental curve
was obtained even though no baseline shift was al-
lowed (Fig. 5B). The signal intensity was directly cal-
culated from the concentrations and the molecular
weight. However, in addition to the access radius,
which in the ideal case would be the only variable, the
dextran layer thickness had to be reduced to 58 nm for
conversion of molar concentrations to RUs to account
for the absolute size of the signals. Since the program
used for simulations did not allow fitting, approxima-
tions of the measured data were obtained by manual
variation of the parameters. As seen in Fig. 5B, the
principal course of the kinetics, especially with regard
to the biphasic dissociation phase, was reproduced. The
access radius was set to 14 nm, which must be seen as
a composite value accounting for the movement of the
analyte bound to a large molecule linked at one posi-
tion and the clustering of binding sites to pairs, since
an antibody is immobilized.

DISCUSSION

A theoretical description of ligand distribution, a
method to calculate a two-step binding process, and a
comparison of simulated data with measurements of
the BIAcore instrument are presented. It was shown
that the model reproduces key elements of bivalent
binding, such as ligand-dependent contribution of
monovalent and bivalent binding. The purpose of this
study was not to extract true intrinsic binding con-
stants from such measurements, but to contribute to
an understanding of the major factors determining
multivalent binding. The intention of the model was to
highlight the influence of fixing ligands in space at
various densities on bivalent binding. Current ap-
proaches, however, do not regard such geometric fac-
tors and either are based on interaction in solution (as
implemented in the BIAevaluation software) or lack a
distinct ligand distribution (9).

Molecular details could not be taken into account in
our model for two reasons. First, detailed steric knowl-
edge is not available for most experiments; and second,
too many parameters would be obtained, making it
difficult to pinpoint the important properties. Of
course, assuming a molecular size for all involved mol-
ecules, restraining binding to one side of the molecule,
reducing the sphere size, and allowing binding to
neighboring spheres would bring the model closer to
reality. With enough computer power at hand, a ran-
dom seed of realistic ligands in space and simulation of
binding of real analytes including laws for hydrody-

namics and molecular motion might become possible.
However, the dispute about whether the dextran layer
influences binding or not (6, 18), and how flexible it is,
demonstrates that, before detailed models can be ap-
plied, more experimental facts need to be uncovered.
Mass transport limitation according to Eq. [4] has been
tested in the simulations, but turned out not to be of
relevance, at least for the low immobilization densities
where the reaction calculated without mass transport
limitation is slower than the measured reaction. At the
high immobilization densities (10,000 RU) the reaction
calculated without mass transport is indeed faster
then the measured reaction indicating that mass
transport limitation plays a role. However, such high
concentrations are a borderline case for the use of the
model presented here due to steric complications, as
not all ligand sites can be filled simultaneously. We are
aware of the fact that in exact physical terms already
the immobilization of a molecule to a dextran layer is
an approximation to kinetics in solution, since the de-
grees of freedom are reduced. Thus, the access radius is
to be taken as a factor encompassing all these uncer-
tainties.

The model presented here does explain well the bipha-
sic behavior of binding kinetics and its dependence on the
surface density. To compare simulations with measure-
ments, an anti-His-tag antibody and a dimeric His-
tagged protein were chosen. The radii of the access
sphere found necessary to reproduce experimental data
were large compared to the size of the analyte. Radii of 11
to 14 nm were used, whereas a geometric consideration
gives an approximate radius of 9 nm comprising 3 nm
between the two His-tags and 6 nm for the flexible Fab
fragment to which it is bound. The longer effective radius
has most likely two reasons. First, the immobilization of
an antibody does not result in a statistical distribution of
binding sites, and a larger access radius can account for
the clustering of binding sites. Thus, the calculation of
the dimer factor as presented is critical for this case, but
the use of the presented rate equations is not affected. We
used this experimental set up as it is suited to visualize
the effect of bivalent binding. Second, the assumption of
a fully rigid matrix may not hold in practice for the
dextran layer as it is used in the BIAcore cell. The latter
explanation is supported by the observation that recep-
tors immobilized in the dextran layer as monomers can
be dimerized by analytes such as peptidic hormones (23),
suggesting mobility of the dextran fibers. The second rate
equation in the multivalent model presented is likely to
overestimate association, as steric hindrance is not taken
into account. Therefore, the calculated rates in the biva-
lent case are likely to be faster than in reality.

A problem in relating the model to the experiments
performed with the BIAcore is the correlation of reso-
nance units to protein concentrations. This is difficult
to calculate, as the response plateau reached during
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association seen on various surfaces with increasing
coating densities does not correlate with calculations
[at the highest coating density, a lower signal of bound
analyte than expected from an extrapolation of the
lowest coating density is seen (Fig. 1C)]. Since this
behavior can be seen in measurements with other pro-
teins as well (data not shown), this might witness a
nonlinearity in the detection method, depending on the
analyte size and total signal, and/or a steric hindrance
of the bound analyte, making it impossible to bind
every ligand simultaneously. Taking this together with
the assumption of all ligands being functional, the li-
gand concentration has likely been overestimated.

An alternative explanation for the presented measure-
ments would be a continuos, sequential binding of one or
the other binding site to ligands in the matrix, which
would constitute an increased rebinding for bivalent mol-
ecules. As a wobbling between two ligands is automati-
cally included in the model, the only difference to the
model presented here would be that in a model which
relies only on rebinding, no bivalent binding occurs at all.
It is difficult to make this distinction in an experiment
directly. However, BIAcore measurements with monova-
lent molecules at high coating density, and therefore high
probability for rebinding, maintain their characteristic
curve shape for association and dissociation and do not
show a similarity to the curve shape of bivalent molecules
at a low immobilization density. Thus, we believe that the
current model is helpful for the understanding of multi-
valent action and thus for assaying and designing multi-
valent molecules.
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