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Interest continues to increase in the use of folding modulators to overcome 
problems with heterologous protein folding in Escherichia coli. Currently, 
this apprqach, though highly successful with a number of individual 
proteins, remains a somewhat hit-and-miss affair. Ongoing research directed 
at unraveling the precise role and specificity of these folding modulators 
should generate a clearer understanding of the potential and limitations of 
overexpressing folding catalysts in vivo. This will facilitate the development, 
in the not too distant future, of a more structured and rational approach to 

improving the folding of heterologous gene products in f. coli. 
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Introduction 

It is now generally accepted that one of the limiting 
factors in the production of soluble functional het­
erologous proteins in Escherichia coli is the aggregation 
tendency during folding. The fundamental issue for 
many researchers, therefore, is why the folding of many 
recombinant proteins is only poorly guided to the native 
state by the folding modulators present in wild-type 
E. coli, whereas the folding of E. coli's own proteins 
apparently does not constitute a problem. 

Overexpression of a protein in E. coli entails the creation 
of an unnatural situation where folding intermediates are 
present at very high concentrations, which results in 
a greater tendency to aggregate. Many overexpressed 
proteins exist in their natural environments only in 
low amounts, and thus litde evolutionary pressure may 
have existed to optimize their sequences for efficient 
folding. Recombinant proteins are often expressed at 
levels that are . orders of magnitude higher than their 
normal expression levels. It is immediately obvious that 
the propensity to aggregate and the precise mechanistic 
reasons for aggregation will be strongly dependent on the 
particular recombinant protein being expressed, and that 
universally useful solutions are thus unlikely to exist. 

In the light of recent research into the functioning 
of E. coli's folding modulators, this review focuses on 
effecting improved folding of recombinant proteins. 
Particular emphasis is placed on the overexpression of 
these modulators in manipulating the in vivo folding of 
heterologous gene products expressed in the bacterium. 

The panoply of factors that affect protein 
folding 

Before discussing any subtleties of protein folding, such 
as possible constraints on the protein sequence, potential 
specificities of folding modulators, or the regulation of 
the chaperone machinery, a few global factors must be 
clarified.. Successful protein folding requires, of course, 
that the end product is a thermodynamically stable 
entity. Many reports of only 'insoluble material' being 
produced upon expression of a particular protein in 
E. coli are not in the least surprising, in that something 
thermodyna~cally impossible was attempted. Almost 
invariably, truncated domains are severely destabilized 
and often totally unable to fold to monomeric protein; 
for example, a ~-barrel from which, say, two strands are 
'missing (e.g. because the domain was 'defined' as being 
located between conveniently spaced restriction sites) 
will generally not choose to go to the native state of 
the original protein. Similarly, dimeric complexes or 
multi-subunit assemblies may not tolerate the absence 
of a subunit, by virtue of a large hydrophobic subunit 
interface becoming exposed. In such cases, aggregation 
may be the only option for the protein to cover its 
hydrophobic surface. Furthermore, many heterologous 
proteins of interest are naturally secreted and contain 
disulfide bonds. The formation of these disulfides is often 
crucial for structure formation (i .. e. for the stability of an 
intermediate) or at least for obtaining a minimal stability 
in the final product. In cases such as these, expression 
of functional protein in the cytoplasm of E. coli has 
very little chance of success, unless measures are taken 
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that favqr disulfide bond formation in this compartment, 
even though soluble, albeit inactive, protein is sometimes 
formed [1 ,2]. 

Moreover, post-translational modifications, notably gly­
cosylation, . may contribute to the solubility of crucial 
aggregation-prone intermediates in the folding pathway 
of some proteins, or even to the stability of the final 
product, as recently demonstrated in the case of human 
C02 [3]. This severely restricts the ability to produce 
such products in a soluble functional form in· E. ·coli, 
unless the protein can be engineered to exist without the 
sugars, ·as was possible with .C02 [3]. The importance 
of sugars for the stability and folding of proteins varies 
greatly, ranging from none to essentiaL Furthermore, it 
has been proposed that the presence of calnexin in the 
eukaryotic endoplasmic reticulum membrane (reviewed 
in (4]) may provide an 'anchoring' of polypeptides 
via sugar residues during folding, thus facilitating the 
subsequent transient binding of folding modulators and 
preventing premature aggregation. This of course is 
also something that prokaryotic systems cannot imitate. 
Thus, we may conclude that overexpression of folding 
modulators in E. coli only has a chance of having 
a beneficial effect in those cases where the final 
recombinant product is thermodynamically stable as a 
folded protein and does not depend on post-translational 
modification for either folding or stability. 
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In order to achieve correct folding of its own proteins, 
E. coli contains a number of helper proteins (collectively 
referred to as 'folding modulators' here) that catalyze 
certain folding steps or prevent the competing reaction 
of aggregation. It is likely that not all of these 
factors have been discovered, or .. at least recognized 
in their function in protein folding, up to now. One 
may separate these into 'molecular chaperones', which 
do not catalyze folding, but block the pathways of 
aggregation, and factors that facilitate a specific stage 
in the folding process, that is, 'folding catalysts' (see 
Fig. 1). Additionally, proteins exist that may prevent 
premature folding in order to facilitate the export 
of a polypeptide. Clearly, solving the paradox of the 
relative inefficiency of folding of many heterologous 
proteins compared with most 'native' E. coli proteins 
necessitates an understanding of how a protein can itself 
be optimized to fold well in the bacterial environment 
as well as the amounts and the specificity of the folding 
modulators it requires. 

General advances in E. coli expression technology (e.g. 
vector improvement and refinement of environmental 
conditions for cell growth; reviewed in [5•]) have 
meant that, for many heterologous gene . products, the 
yield-limiting step in their production in E. coli is the 
folding in vivo, rather than synthesis, of the polypeptide. 
This fact, coupled with the demonstration that the 
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Fig. 1. Simplified overview of protein folding in f. coli. The demonstration that a protein contains all the information it needs to assume its 
correctly folded functional form [71] suggests that folding is essentially spontaneous in vivo as well, but is 'channeled' (i.e. side reactions 
are blocked). Furthermore, specific reactions may be catalyzed and simply occur more quickly. A variety of protein factors have a role in 
protein folding in E. coli, including molecular chaperones, which prevent aggregation of unfolded polypeptide chains resulting from exposed 
hydrophobic residues before folding or membrane translocation, and folding catalysts, which accelerate such specific steps in the folding 
process as proline cis/trans isomerization and disulfide bond formation [72). A schematic view of this assisted folding of a protein in E. coli 
is represented in the diagram. A series of more complex interactions is also known to occur between the various components of the folding 
machinery (see Figs 2, 3) [72,73). Note that disulfide bond formation only occurs in the periplasmic compartment and requires passage 
through the membrane, which is not shown here for the sake of simplicity (see Fig. 3). . 
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ability to produce soluble functional proteins in E. coli 
is closely linked to inherent manipulatable properties 
of the proteins themselves [6-8,9•,10,11,12•], has led 
to renewed interest in the use of folding catalyst 
overexpression in vivo to improve the production of 
functional heterologous proteins in E. coli. 

We should stress again that the principal physicochemical 
problems of folding are the same for E. coli proteins 
and heterologous proteins. E. coli may reasonably be 
assumed to have optimized the amount of its folding 
modulator content, and one should not be surprised 
if the simple overexpression of a single folding factor 
has frequently no effect, or even a deleterious effect. 
The effec~s of the various factors may also be synergistic 
and for this reason too, folding enhancements may not 
be apparent if only single components of the folding 
machinery are overexpressed. The greatest chance of 
success, therefore, may reside in the use of a 'shotgun' 
approach, in which a battery of folding modulators 
would be simultaneously overproduced in order to 

• 

overcome different folding limitations in a variety of 
heterologous proteins. Furthermore, it may also be 
worth noting that the absence from this article of 
investigations of a particular folding catalyst(s) does not 
indicate that these studies have not been carried out, 
merely that no results for such experiments have been 
documented (i.e. the factor may have been tested but 
had no effect). 

ATP hydrolysis 
I > 

Re-binding by 
Dnaj/ DnaK 

GrpE 

Q 

Manipulating the cytoplasmic folding process in 
Escherichia coli 

Two major groups of molecular chaperones are now 
known to be involved in protein folding in the cytoplasm 
of E. coli: the Hsp70 and Hsp60 families. The functional 
mechanisms of these chaperones are represented in 
Figure 2. It is very likely, however, that other proteins 
will soon join the list of unambiguously identified 
folding modulators of E. coli. 

The initial demonstration that GroEL and GroES are in­
volved in cellular protein folding resulted from studying 
the effects of increasing and lowering their expression in 
the cell on intracellular folding of ribulose-6-phosphate 
carboxylase/ oxygenase (Rubisco) [13]. Several other 
experiments designed to assess the effect of GroEL/ES 
overexpression on heterologous protein production in 
E. coli have also been reviewed [5•]. A number of recent 
studies have reinvestigated this approach with respect to 
the folding of various other proteins. The co-overexpres­
sion of GroES and GroEL results in increased solubility 
of several recombinant tyrosine kinases [14•, 15•], and 
similar effects of GroEL/ ES overproduction on solubility 
of the E. coli glutamate racemase protein have also been 
noted [16•]. The co-overproduction of GroEL/ ES also 
leads to increased solubility and recovered activity of 
a heterologous dihydrofolate reductase in E. coli [17•]. 
Interestingly, this chaperone-mediated improvement in 
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Fig. 2. Role of the Hsp70 machinery 
(DnaK, DnaJ and GrpE) and Hsp60 ma­
chinery (GroEL and GroES) [72,73]. DnaK 
and DnaJ recognize and bind hydropho­
bic regions in short peptides, thus pre­
venting premature folding or aggrega­
tion during translation and transloca­
tion. The AlP-dependent binding and re­
lease of peptides uses GrpE for stimulat­
ing nucleotide exchange. Partially folded 
polypeptides may then be passed from 
the DnaK/DnaJ/GrpE machinery to the 
Hsp60 complex of E. coli, GroEUES, a 
large oligomeric complex that allows 
completion of folding of the polypep­
tides in the complex [74] . This simplified 
model ignores issues of stoichiometry of 
ATP and chaperones with respect to each 
other. With the possible emergence of 
new factors in protein folding, this dia­
gram may be extended to encompass 
components outside the Hsp70/Hsp60 
families. Despite the participation of ATP 
in various conformational transitions of 
the chaperones, it should be stressed 
again that protein folding per se occurs 
spontaneously and does not require a 
source of energy. 
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folding ultimately leads to a smaller increase in yield 
than engineering the protein for ·better folding [9•,17•] 
(for another such comparison, see [12•,18]). 

Not all proteins require GroEL/ES for folding in vivo, 
however. This is demonstrated by the unchanged pro­
duction of succinyl-CoA synthetase, an a.2~2 tetramer, 
at the restrictive temperature, in E. coli strains bearing 
GroES or GroEL temperature-sensitive mutations [19]. 

Other researchers have found no effect of GroEL/ES 
overproduction on secreted human procollagenase ac­
cumulation in E. coli. This would be expected because 
folding of this protein occurs in the peri plasm, although 
a participation of GroEL/ES in the transport process 
itself cannot be excluded. In the absence of a signal 
peptide or the presence of a non-functional one, the 
accumulation of soluble and insoluble protein in the 
cytoplasm is increased in the GroEL/ES overproducers 
by increasing the half-life of the protein [20]. It is 
possible that a compact, more protease-resistant form of 
the protein can be reached, even though its disulfide 
bond cannot be formed. Similarly, in studying the 
effect of overproduction of GroES and GroEL on 
the expression of single-chain Fv antibody fragments 
[21 ], which cannot assume a native structure in the 
wild-type E. coli cytoplasm because of the absence of the 
disulfide bond (but see [1 ,2]), intracellular production 
of soluble, but inactive, fragment was found to be 
increased twofold. Refolding was subsequently required 
to obtain any antigen-binding activity, however, which 
re-emphasises the important point that soluble protein is 
not necessarily functional protein. No effect on the levels 
of secreted single-chain Fv fragments was observable, 
similar to the procollagenase experiments [20], because 
the production of antibody fragments appears to be 
limited by periplasmic folding [18]. 

. 

The above experiments were based on the assumption 
that GroEL/ES is present in insufficient amounts. 
Another interesting issue is whether different homologs 
of GroEL are specific for particular substrates. If this 
were the case, particular homologs would have to be 
used instead of GroEL. Neither GroEL nor the plant 
chaperonin was found to be able to assemble active 
plant Rubisco in E. coli, however, whereas both could 
enhance the assembly of cyanobacterial Rubisco [22]. 

Many, though not all [19], recombinant proteins make 
use of GroEL/ES in the cell and need it to be present 
at wild-type levels. Such evidence for the general 
importance of GroEL and GroES in heterologous 
protein folding in E. coli comes from experiments in 
which their levels were reduced, rather than increased, 
and an absolute requirement for the two chaperones 
was demonstrated [13]. In more recent experiments, 
decreased levels of GroEL have been shown to lead to a 
reduced growth rate and increased amounts of a number 
of heat-shock polypeptides, apparently the result of an 
attempt by the cell to compensate for the GroEL effect 
[23]. 

An important feature of heat-shock protein Hsp70 
family manipulation in E. coli is that overproduction 

of these proteins must be balanced. Blum et al. 
[24] demonstrated that overproduction of DnaK alone 
can lead to plasmid instability, defective filamentation 
and ultimately bactericidal effects in E. coli, whereas 
co-overproduction of DnaJ can partially or completely 
overcome all of these effects. In accordance with this 
is the finding that the simultaneous overproduction of 
DnaK, DnaJ and GrpE in E. coli appeared to lead to 
somewhat increased solubility of several co-expressed 
protein tyrosine kinases [14•], even though the total 
protein level is decreased. DnaK alone also leads to a 
decrease in the size of inclusion bodies ofhuman growth 
hormone and increases the ratio of soluble/insoluble 
protein in directly comparable experiments by about a 
factor of two [25]. 

Other studies have investigated the effects of overex­
pression of DnaK alone on both heterologous protein 
secretion and folding. In cytoplasmically expressed pro­
collagenase, DnaK overexpression increases the half-life 
and thus accumulation of both soluble and insoluble 
procollagenase. For secreted procollagenase, export is 
inhibited upon DnaK. overproduction [20]. In contrast, 
DnaK and GroEL appear to lead to an increase in signal 
sequence processing of LamB-~-galactosidase fusions, 
which cannot normally be transported [26]. DnaK has 
no positive effect on penicillin-binding protein secretion, 
however [27•]. The effect of DnaK and DnaJ on 
secretion of human granulocyte stimulating factor has 
also been investigated [28]. In contrast to SecB and 
GroEL/ES, DnaK and DnaJ act synergistically to increase 
signal 5 sequence processing (and thus presumably 
transport). Even so, only a small fraction of the protein 
is soluble, and· of this, only a small fraction is processed. 
In conclusion, therefore, overexpression of components 
of the Hsp70 complex can result in very heterogeneous 
effects . 

Many other E. coli stress proteins induced by stress 
conditions, such as cold [29], superoxide [30], nutrient 
starvation [31 ], pressure [32,33], phage production 
[34,35], inclusion body formation [36], or universal 
stress conditions [3 7], have been reported and, indeed, 
continue to be identified and characterized. Small heat 
shock proteins [38] and a member of the Hsp90 class 
(HtpG) [39] have also been found in E. coli, as well as 
a homolog of DnaK [40] and a stationary phase anal<?g 
of DnaJ [ 41]. Furthermore, novel specialized chaperones 
[42], notably those for pilus assembly (reviewed in [43]), 
continue to be discovered, but it is not yet clear which 
of these proteins have a direct or indirect role in general 
protein folding. Thus, we consider these to be currently 
outside the scope of this review because studies of the 
effects of their overproduction on heterologous protein 
folding in E. coli have not been reported to date. 

Despite the suggestion by some authors that overpro..:. 
duction of GroEL/ES (even given its already very high 
concentration in the cell) or DnaK/DnaJ/GrpE might 
be of general use in increasing the solubility in E. coli 
of otherwise insoluble heterologous proteins, it is clear 
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that the effects reviewed here are highly protein -specific. 
Furthermore, it is likely that several factors may often 
need to cooperate for an effect on heterologous protein 
production to be seen. Thus, a dramatic general effect 
of overproducing any one or more of these chaperones 
on the folding of all heterologous proteins expressed in 
E. coli may probably not be realistically expected. 

Improving the process of secretion 

A potential problem inherent in the periplasmic expres­
sion of heterologous proteins in E. coli is translocation 
across the cytoplasmic membrane. Although transport of 
foreign proteins in E. coli has been exploited for some 
time, it is unclear whether the detailed requirements 
for the mature protein sequence of eukaryotic and 
Gram-positive proteins are precisely identical or only 
roughly similar to those for E. coli itself. The polypep­
tides must remain at least partially unfolded before 
membrane translocation, and in eukaryotes, transport is 
largely co-translational, whereas in E. coli both co- and 
post-translational export are known. In the case of 
most E. coli proteins, export from the cytoplasm to 
the periplasm depends on the machinery encoded by 
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the 'sec' genes (discovered as a res~lt of mutations 
that block export), a secretion system composed of 
several proteins, mostly located in the membrane, which 
together facilitate membrane translocation by nascent 
polypeptides (see Fig. 3) [44•]. 

Manipulation of a number of components of the 
secretion system has been carried out in an attempt 
to improve heterologous protein production in E. coli. 
Export of a recombinant penicillin-binding protein in 
E. coli has been found to be facilitated by increasing 
the SecB content of the producing strain [27•], and 
co-expression of the E. coli SecB protein in Badllus 
subtilis has been shown to result in stimulation of export 
of recombinant E. coli maltose-binding protein [45]. 
In another study, co-overexpression of the SeeD and 
SecF proteins has been found to result in increased 
translocation of proteins with mutant signal sequences 
and faster secretion of wild-type proteins in E. coli, 
whereas depletion of the two proteins led to a greatly 
reduced level of translocation [ 46•]. SeeD and perhaps 
SecF are suspected to participate in protein release 
steps, which may require an electrochemical gradient 
[ 46•, 4 7, 48]. A direct role in peri plasmic folding may 
of course also be envisaged, and these proteins might 

© 1995 Current Opinion in Biotechnology 

Fig. 3. Proposed model for polypeptide 
translocation of the cytoplasmic mem­
brane in E. coli. Translocation of the 
E. coli membrane by secreted proteins 
is normally mediated by the sec system, 
although its universal use is not proven 
[56]. The Sec proteins SecB and (perhaps) 
SecA, as well as, most likely, -other chap­
erones, maintain the nascent polypeptide 
in a translocation-competent state before 
directing its insertion into the membrane. 
SecB, a cytoplasmic factor involved in 
protein export, is thought (a) to first in­
teract with free polypeptide chains in 
the unfolded protein and (b) to deliver 
the protein to SecA in a translocation­
competent form [75], although it does 
not react with all secreted proteins. SecA 
is a peripheral membrane protein with 
ATPase activity that interacts with SecB 
and the polypeptide chain to be translo­
cated. SecA then accompanies the chain 
into the membrane so that it transiently 
becomes a transmembrane protein itself 
[76]. (c) The 'translocase' component of 
the Sec machinery is believed to be made 
up of three proteins, SecY, SecE, · and 
SecG. In eukaryotes, it has been shown 
by fluorescence labeling of precursors 
that proteins do indeed move through 
a gated aqueous pore [77]. Further pro­
teins involved in the translocation pro­
cess, probably at the release stage, or 
even the folding stage, are SeeD and 
Sec f. 

• 
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function as periplasmic, though membrane-bound, 
chaperones with a large periplasmic domain [49•]. 

The influence of the sequence of heterologous proteins 
on their translocation efficiency in E. coli has also 
been repeatedly emphasized, with lysines and especially 
arginines at the beginning of the mature protein resulting 
in more difficult crossing of the membrane during 
sec-dependent translocation ([50] and references therein). 
The prlA suppressor mutations of the Sec Y protein have 
been demonstrated to dramatically alleviate filamentous 
phage growth defects associated with positively charged 
residues close to the signal sequence cleavage site of the 
mature pill coat protein [51•]. Such E. coli suppressor 
strains might prove even more useful in general by 
overcoming secretion problems associated with the 
production in E. coli of heterologous proteins that carry 
positively charged residues near the amino terminus of 
the mature protein (see also [52••]). 

Production of growth hormones in the periplasm of 
E. coli has been found to lead to a 30-fold higher 
amount of a human hormone than of a porcine homolog 
under identical conditions. By making hybrid proteins, 
two helices were found to be responsible for this 
effect. Unfortunately, from the published data it is 
difficult to distinguish between an effect on secretion and 
periplasmic folding [53], and thus the cause of the effect 
may be similar to that seen in [ 12•]. 

The prl (protein localization) mutations named dif­
ferently from the sec mutations by virtue of having 
been found from different genetic selections have 
been discovered through their restoration of export 
to proteins with secretion defects. Several Prl proteins 
are now known to be identical to Sec proteins (PrlD, 
PriG and PrlA are identical to SecA, SecE and Sec Y, 
respectively), though others are different. The effect 
of overproduction of one of these Prl proteins, PrlF, 
which was originally isolated as a suppressor of secreted 
fusion protein lethality in E. coli, on the production 
of a Bacillus stearothermophilus a-amylase enzyme has 
recently been demonstrated by Minas and Bailey [54••]. 
They found that although E. coli cell viability was 
severely impaired upon overproduction of the a-amylase 
enzyme, co-overexpression of the prlF gene led to 
improved cell viability, higher a-amylase yields, and 
greater specific enzyme production [54••]. PrlF may 
act by activating the Lon protease [55] to degrade 
the otherwise lethal accumulation of the precursor, 
even though higher total protease activity cannot be 
measured, and the phenotypic effect is different from 
increasing the Lon concentration by heat shock. 

Another investigation with PrlA4, a mutant form of the 
SecY protein, has shown that its co-overexpression with 
SecE leads to an increased yield of recombinant human 
interleukin (IL)-6 in the periplasm of E. coli [52••]. From 
the presumed function of Sec Y and SecE in the actual 
transport process, this appears to be a case where the 
transport step itself is limiting. 

The existence of a 'non-classical' or sec-independent 
pathway of secretion in E. coli has been proposed on 

the basis of the surprising homologies between several 
components and eukaryotic transport factors ((56] and 
references therein). To the best of our knowledge, 
however, no positive effect on heterologous protein 
production has been reported to date as a result of 
overexpression of any of these pathway components. 

These various results indicate that, at least for some 
heterologous proteins for which translocation appears to 
be the limiting step in E. coli expression, overexpression 
of one or more secretory proteins or accessory factors, 
which may clean up the debris causing stress on the cell, 
might allow such problems to be partially overcome. 
The amount and/ or proportion of correctly processed 
and folded gene products may thus be increased, or at 
least the time of growth might be extended. The limiting 
step in the production process frequently occurs not in 
membrane passage itself, however, but in the subsequent 
folding in the periplasm (see next section). 

Finally, these results of manipulation of the secretion 
apparatus are by no means universal and the protein­
specificity of the effects is demonstrated by those 
examples where the level of the recombinant protein 
could not be improved. 

Folding in the periplasm 

Following translocation of heterologous proteins through 
the cytoplasmic membrane, folding takes place in the 
periplasmic space. The periplasm is the compartment 
of E. coli in which, because of its non-reducing · 
environment, disulfide-containing heterologous proteins 
must generally be expressed (for an alternative strategy, 
see [1,2]). To date, no general molecular chaperones 
that prevent non-productive folding reactions have been 
identified in the periplasm, though SeeD and SecF, trans- . 
membrane proteins with extended periplasmic domains, 
might help to prevent aggregation of newly translocated 
proteins during the initial stages of folding [46•,49•]. 
Furthermore, ATP, which is so closely associated with 
chaperone action in the cytoplasm (see Fig. 2), is not 
thought to exist in the periplasmic space [49•]. 

Although a wide variety of heterologous proteins have 
now been produced in the periplasm of E. coli, studies 
of their folding are limited. In the case of antibody 
fragment [18] and T -cell receptor (TCR) fragment 
[57•] production, the limiting step has been shown 
to be folding of the fragments in the periplasm. In 
the latter study, the authors attempted to achieve a 
global activation of potential chaperones including 
previously unidentified ones by overexpression 
at low temperature of the heat-shock factor o32 

(encoded by rpol-I), the sigma subunit of the RNA 
polymerase. Co-overexpression of a32 and the E. coli 
periplasmic disulfide isomerase DsbA was found · to 
result in an increased yield of one of the expressed 
TCR fragments, concomitant with reduced proteolytic 
degradation [5 7• ,58]. 

A further, albeit related, problem in the expression 
of heterologous proteins in the E. coli peri plasm is 
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that of degradation by host proteases. In a recent 
paper, Meerman and Georgiou [59•] have described 
a set of E. coli strains deficient in all (then) known 
cell envelope proteases as well as o32 (rpoH), which 
controls several heat-shock regulated proteases such as 
Lon [59•]. They also report a dramatic increase in the 
expression of various heterologous proteins in these 
mutant strains of E. coli. Newly identified homologs of 
the periplasmic protease DegP (SWISS-PROT accession 
numbers: P31137, P39099 and P39436) may also be 
worth investigating for similar effects on heterologous­
protein production. When manipulating host cell pro­
teases, however, one must bear in mind that proteolytic 
degradation may be a symptom, rather than a cause, of 
folding problems, serving to remove misfolded material 
(see also [54••]) and already formed aggregates whose 
accumulation in the absence of proteases might prove 
to be toxic. Thus, the possibility exists that a primary 
effect of protease depletion may be to actually increase 
toxic effects of heterologous protein expression on the 
cell. 

Disulfide bond isomerization and proline 
cis/trans isomerization 

The molecular chaperones discussed thus far are involved 
in increasing the· yield, rather than the rate of in 
vivo folding of heterologous proteins, but E. coli also 
possesses several proteins that catalyze reactions that 
might otherwise limit the rate of the folding process. 
One such protein is DsbA, a periplasmic protein 
that is involved in disulfide bond formation in the 
non-reducing environment of the E. coli periplasm 
[60•,61]. DsbA, present in an oxidized, but strained 
form, probably acts mainly as an oxidant. It is reoxidized 
by DsbB, a membrane-spanning protein which might 
act by coupling its own disulfide bond formation to 
the electron transport chain [ 60•]. DsbC, a further 
component of the disulfide bond formation machinery, 
may function by complementing the action of DsbA, 
and also by catalyzing isomerization, rather than net 
formation, of disulfide bonds by virtue of both its 
oxidized and its reduced forms being present at the 
oxidizing redox potential of the periplasm [60•,62]. 
Another membrane-bound protein with a similar active 
site has been discovered to be involved in periplasmic 
cytochrome c biogenesis [63•], where it may serve to 
facilitate the coupling of heme to cysteines. It has also 
turned up in the screening of Raina and colleagues 
[62], however, who have named it DsbD. Indeed, it 
has recently been shown to be required for human 
placental alkaline phosphatase production in E. coli [64], 
even though neither its overexpression nor that of DsbA 
[65] had any effect. 

Several studies have investigated the effects of overex­
pression of these folding catalysts on the expression of 
heterologous proteins in E. coli. In the case of antibody 
fragment production in the E. coli periplasm, DsbA 
was found to be necessary for the correct formation 

of disulfide bonds [18]. This requirement for DsbA 
has als,o been demonstrated for TCR fragments [57•] 
(albeit in synergy with an unknown factor which 
was induced by o32), and bovine pancreatic trypsin 
inhibitor (BPTI) [66•]. Nevertheless, overexpression of 
OshA increased the amount neither of correctly folded 
antibody fragments [ 18) nor of human placental alkaline 
phosphatase [ 64]. In contrast, its overproduction in 
combination with a number of other factors was found 
to result in increased yields ofTCR fragments [57•] and 
of a protease inhibitor [ 6 7]. 

In general, large proteins with few disulfides are 
probably less likely to be limited by disulfide formation 
than are small disulfide-rich proteins, for which rapid 
rearrangement of disulfide bonds may be essential for 
attaining the native structure. 

Conversely, some proteins have been found to require 
the absence of DsbA and DsbB for their production 
in functional form; expression of a metallo-~-lactamase 
from Bacteroides fragilis in wild-type E. coli, in the 
presence of DsbA and DsbB, has been shown to 
yield an enzyme with aberrant disulfide bonds that is 
proteolytically unstable [68•]. In the absence of the 
two Dsb proteins, however, the ~-lactamase assumed 
a conformation that contained no disulfide bonds and 
was proteolytically stable. 

The other commonly described catalyst of protein 
folding is peptidyl prolyl ·cis/trans isomerase (PPiase), 
which catalyzes the isomerization of X-Pro bonds 
(three-letter amino acid code, where X is any residue), 
a potentially rate-limiting step in the folding of many 
proteins. An investigation in vitro of the role of three 
PPiases in the folding of carbonic anhydrase II, however, 
found no increase in the folding yield [ 69]. This indicates 
that the sole role of these isomerases in protein folding 
must be to accelerate isomerization and, currently, no 
basis exists for their suggested role as chaperones (i.e. 
preventing aggregation [ 69]). Indeed, no dramatic effect 
was observed upon disruption of the periplasmic rotA 
gene, which encodes the E. coli rotamase enzyme (M 
Kleerebezem et al., unpublished data). · 

E. coli probably has at least eight PPiases (SWISS­
PROT accession numbers: P20752, P23869, P39159, 
P21202, P22563, P39311, P30856 and P22257). This 
is mostly deduced from sequence homology because 
not all have been tested for activity yet, but more . 
enzymes may also be discovered. PPiases belong to 
three different protein families, with two periplasmic 
and six cytoplasmic proteins (reviewed in [70•]; G 
Fischer, personal communication). We are not aware 
of systematic studies on the overexpression of all of 
these en~ymes to test any hypothetical specificity on the 
folding of recombinant proteins in vivo. Single enzymes 
have been overexpressed, however (see below). 

In a study with secreted recombinant antibody frag­
ments, results similar to those found with DsbA were 

• 

obtained [18]. Overexpression of the peri plasmic E. coli 
rotamase enzyme had no effect on the yield of active 
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soluble Fab fragments and only a minor effect on 
single-chain Fv fragments. A similar study also found 
that overproduction of either PPiase or DsbA had no 
effect on the yield in E. coli ofperiplasmic soluble human 
placental alkaline phosphatase protein from which the 
amino-terminal transmembrane helix was deleted [64]. 
This was undoubtedly a reasonable experiment to try in 
the case of an enzyme containing four disulfide bonds 
and 27 proline residues, but it shows that cellular protein 
folding is highly complex and that non-chemical steps 
are frequently limiting the folding yield. 

Finally, if one considers the pathway of protein folding 
as a series of essentially sequential, potentially. limiting, 
steps, it is obvious that manipulation of any stage of the 
pathway, such as disulfide bond or proline isomerization, 
can lead to improved folding only when other steps 
do not lead to the accumulation of aggregation-prone 
intermediates. Therefore, should other folding bottle­
necks be identified and/ or overcome (by catalyzing the 
relevant steps or plugging deleterious pathways), it is 
possible that folding modulators, such as Dsb proteins or -
PPiases, whose overproduction had previously been 
found to have no effect, might be beneficially reinves­
tigated. 

Conclusions 

The effects of folding catalyst overexpression reviewed 
here quite clearly demonstrate the potential of this 
approach in partially solving at least some of the 
problems in the folding of several heterologous proteins 
in E. coli. For each success story, however, there are many 
more (often unpublished) failures at present, and it is 
this unpredictability which dictates that, for now, the 
generation of a better understanding of E. coli's protein 
folding mechanisms remains a priority. The hope is 
obviously that a clearer picture of the in vivo process 
will point the way to a more rational approach to 
improving the folding of heterologous proteins in E. coli. 
Furthermore, it will be interesting to note whether 
overexpression of folding modulators might become an 
even more fruitful approach in the future when current . . .. 
folding bottlenecks in some individual proteins have 
been eliminated by rational engineering or evolutionary 
approaches to changing. the protein sequence. In the 
meantime, sufficient success has been achieved to date 
with individual proteins to encourage any researcher to 
use a battery of folding modulators to attempt to solve 
folding problems. 
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