|
||||||
Antibodies |
||||||
|
Catalytic AntibodiesResearchers have used the incredible functional diversity of the immune system in a clever way: to design new enzymes. Enzymes work by easing molecules through a difficult chemical change. For instance, look at the Diels-Alder reaction shown here at the bottom of the illustration. The two molecules on the left come together, forming an unstable intermediate shown at the center in red. Then, the intermediate falls apart, releasing sulfur dioxide and forming the desired product, shown on the right. Enzymes act by stabilizing the intermediate, smoothing the path from start to finish.To make an antibody into an enzyme, we need to find an antibody that stabilizes this intermediate transition state in a similar way. Researchers have done this by finding antibodies that bind to a molecule that mimics the transition state, like the one shown here in green. These antibody-enzymes are termed catalytic antibodies. The catalytic antibody shown here, from PDB entry 1c1e, performs the Diels-Alder condensation reaction shown in the diagram. This is significant because this type of reaction is not performed by any natural enzymes. Antibodies that perform a number of other cleavage and condensation reactions, including reactions that are impossible any other way, may be found in the PDB. Next: Exploring the Structures |
|||||
Last changed by: A.Honegger, |