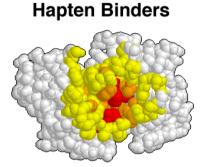
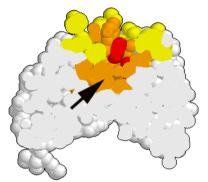
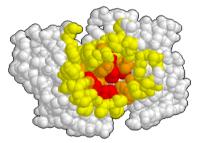

Recent applications of bioinformatics to antibody engineering

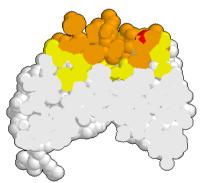
A second look at antibody humanization by CDR-Graft

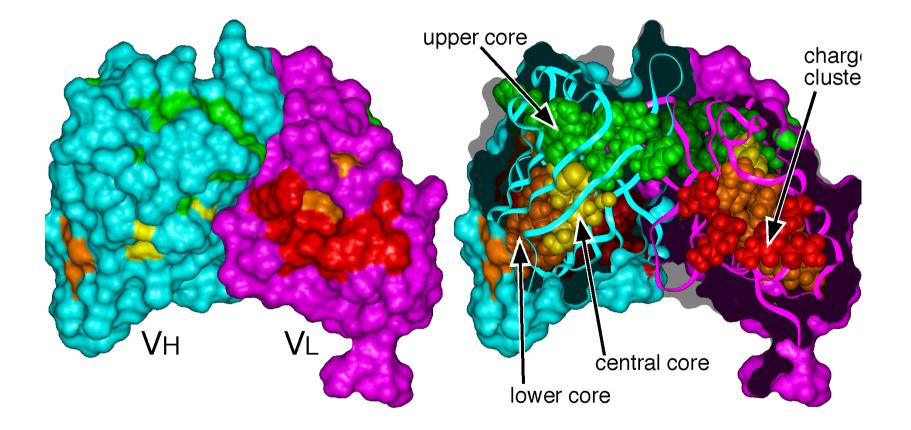

Reasons why CDR grafts fail


Annemarie Honegger, EMBL-EBI Industry Programme Workshop: Antibody Informatics 10-11 July 2012




Antigen Contacts




Oligomer Binders

Nterm, outer loop

Upper core packing

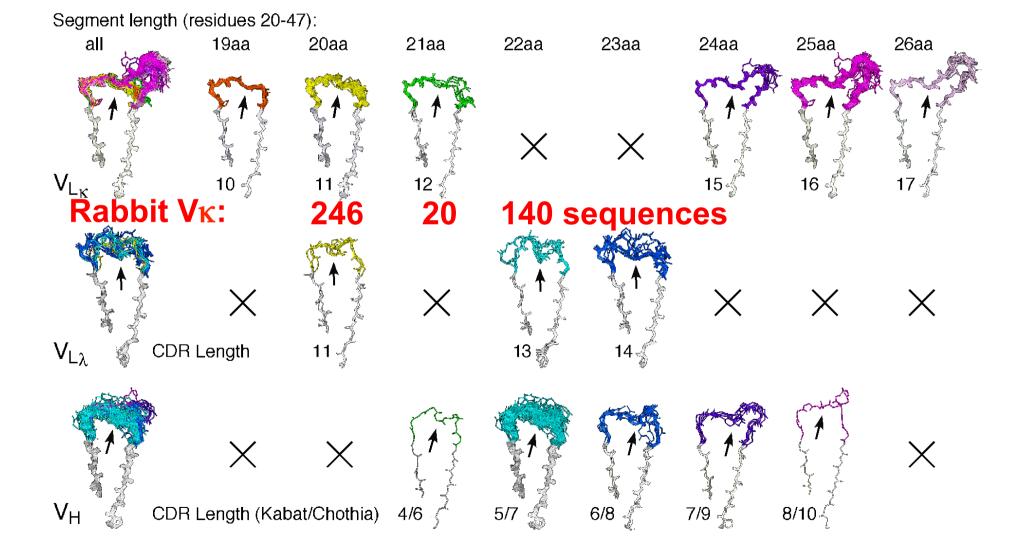
- Germline sequence alignment retrieved from IMGT
- ~1000 rabbit V_H, ~500 V κ and ~30 V λ retrieved from NCBI
- Less sequence variability than human and murine antibodies,
- frameworks $huV\kappa1$ and huV_H3 -like
- Several features found that are not seen in human and murine variable domains
- Only two rabbit antibody structures found in the pdb: 3NL4 (1.54Å res.) is annotated as such, 2X7L isn't.

🗯 Excel File Edit	View Insert	Format T	ools Data	Utilities	Coloring	Sequence	454_Sequenc	PDB Rosetta	a update or del
$\odot \bigcirc \bigcirc$						📄 Ra	abbitAb.xlsx		
🎦 🛅 🗊 🗟 🚔 🔀	🗈 💼 💉 🛙	Ω • 🖾 • 🔉	• 🏞 • 🏆	• <i>fx</i>	120%	• 🕐			
A Home Layout T	ables Charts	SmartArt	Formulas	Data	Review	Developer			
CN50 🛟 😣 😋	(fx)								
A		MNOPQR	S T U V W X						
2							CDR H1		
-						_	CDK HI		
4 Kabat VH	-1 N M + 10	9 6 4 8 6 7 9	1919	1 ²² 51 22 23	22 25 26 26	27 28 31 33 33	* * * <mark>35</mark> 3 35 35 35 35 35 35 35 35 35 35 35 35 35	36 337 337 339 41 41 42	50 50 51 50 50 50 50 50 50 50 50 50 50 50 50 50
5 AHo	1 C M 4 10	0 N 8 0 1 1 1			<mark>8 8 8 8 8 8 8</mark>	29 30 31 32 33 33		4444444	51 53 55 55 57 57 57 57 57 57
7 VH Accessibility		E <mark>/Q</mark>			c 🛛			WR	
9 Upper Core		_		_					
10 Central Core 11 Lower Core		-	-	1	-			• •	G/A
		_							
13 V/C Interface 15 L/H Interface					_				
									_
17 VH/Hapten Interface 18 VH/Oligomer Interface								-	
19 VH/Protein Interface									
21 HuCal VH1A						GTESS	Y A T S	WVROAPCO	
22 HuCal VH1B	QVQLV	QSCAE	V K K P G A S	s v <mark>k</mark> v s	CKASG.	Y T F T S	Y Y M H	WVRQAPGO	GLEWMGWI
23 HuCal VH2	. <mark>Q</mark> V Q L K	ES.GPA	L V <mark>K</mark> P T Q T	T L T L T	CTFSG.	FSLSTS	<mark>G V G V G</mark>		ALEWLALI
24 HuCal VH3 25 HuCal VH4		ES.GGG		SL <mark>R</mark> LS TLSLT	CAA <mark>SG</mark> . CTVSG.	F T F S S . G S I S S .	Y A M S	W V R Q A P G W I R O P P G	G L E W V <mark>S</mark> A I G L E W I G Y I
26 HuCal VH5		QSGAE	V K K P G E S	S L <mark>K</mark> I S	C <mark>KG</mark> SG	Y S F T S	YWIG		GLEWMGII
27 HuCal VH6	. <mark>Q V Q L Q</mark>	QS.GPG	L V <mark>K</mark> P S Q 1	T L <mark>S</mark> L T	CAI <mark>S</mark> G.	DSVSSN	<mark>S</mark> A A <mark>W</mark> N	WIRQSPG	R G L <mark>E W</mark> L G <mark>R T</mark>
29 3NL4:H	. <mark>Q</mark> SVE	ES.GGR							< G L <mark>Q</mark> W I G I I
30 2X7L:A	. Q E Q L V		L V <mark>T</mark> P G T /		CKVSG.	FSLSG.			GLEWVGAI
32 IGHV1S1	F . Q E Q L K				CTASG.	SNISS.	<mark>YGV</mark> S		GLEWIRYI
33 IGHV1S7 34 IGHV1S8		ES.GGG			CKASG.	FTFSS.	••••••••••••••••••••••••••••••••••••••	W V R Q A P G I	GLEWIGCI
35 IGHV1513									
36 IGHV1S17	F . Q E Q L E F . Q E Q Q K	Esic Ye	t anoth	er nu	mperin	ig scne	me for im	imunogic	niiuda
37 IGHV1S19	D		riable c	lomai	ns [,] ∆n	autom	atic mode	hre prile	I
38 IGHV1S21	P. EDQLV					autom			I
39 IGHV1524	FOREQLK	an 🧯	alysis t	tool					1
40 IGHV1S25 41 IGHV1S26			•		(2001)	667 67			1
42 IGHV1528				. 309 (2001)	007-070	JAAAAA		I I
43 IGHV1S29			p://www	bioc	uzh.ch/	antiboc	V		I
44 IGHV1S31	F <mark>Q.S.V</mark> E	ES.R	•						I
45 IGHV1S32	P OLVK	* S. G.G.R	LVTPGG	SLTLT	CTVSG.	FSLSS	<mark>Y</mark> G V <mark>S</mark>	WVROAPGN	GLEYIGFI

Murine and human antibody repertoires are quite similar – the rabbit repertoire is different:

Vκ**-**Domains

- Rabbit kappa light chains contain an additional Cys in position L98 (L80), which can form a disulfide bond with a Cys in C_L
- Chothia canonical rules do not recognize most rabbit CDR L1s, although there is no reason why they should not assume the conformation appropriate to their length
- There is less length variability in CDR-L1 of rabbit Vκ domains than in human and murine kappa domainsCDR L3 in rabbit Vκ lack Gln L108 (L90) and *cis*-Pro L136 (L?), which in human and murine Vκ domains produce the typical Ω-loop conformation. This produces a lambda-like CDR-L3 which might increase the flexibility of the V_L/V_H interface.

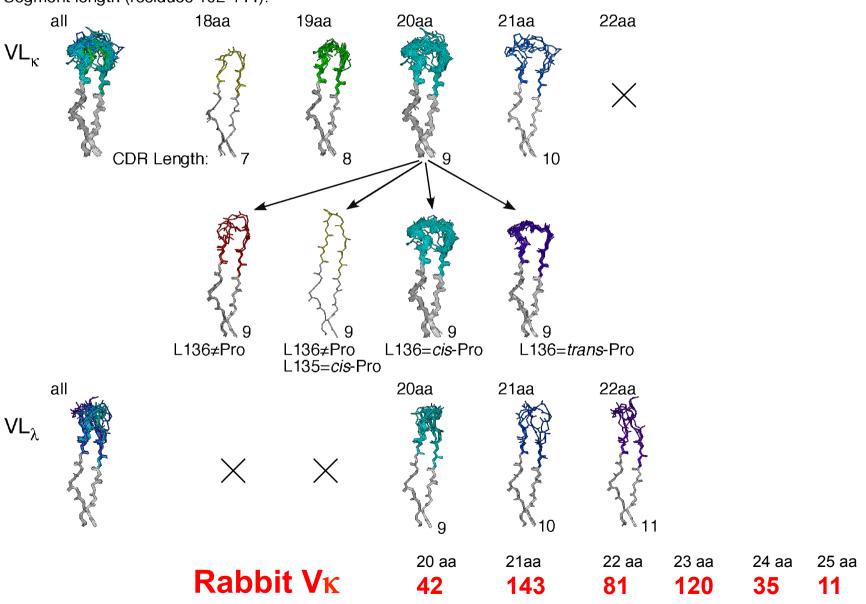

																_													
PDB ID	Chain															L													
Kabat VL kappa		20	71	73	74	در 76	: 1	78	80	81	82	2 84	3 85	4 86	5 87 8 87	89	8 90	91			/	2	Z	A				2	
AHo		88	89	90 91	92	94	95	96	86	66			10	10			Ĩ	ġ:					ļ		5		1		
VL Side Chain Accessibility		D	۲/F							Е	D			Y	YC	2							K					K	
Upper Core Central Core Lower Core																							Ť	X	Z				
VC Interface																				S	5	~	7			г		2	
LH Interface		С																			0	-	ł	(У		
VL/Haptens		Г																		$ \land$				2		1			
VL/Oligomers																		4					1	X					
VL/Proteins			_		_																				74	X	~		
HuCal Vk1		D		T L	Τ.	IS	S	L	2 P		_	A		Y	Y	Q	÷	•				Č		\int		S			
HuCal Vk2 HuCal Vk3		D			K			V									÷							Ż	3	1			
HuCal Vk3		D		T L	Ť	IS			2 A			_			Y		÷	:						V					
					_																								
IGKV1S1 IGKV1S2	IGKV1S1*0 IGKV1S2*0				. т т																_				• •	•	•••	• •	
IGKV152 IGKV153	IGKV152*0 IGKV1S3*0				. Т . Т				-							-	_								• •	•	•••	• •	
IGKV155	IGKV155*0				т.				-							-					_					•			
IGKV1S5	IGKV1S5*0				. 7				-							-							-	D		:			
IGKV1S6	IGKV1S6*0		F					V C	-											-									
IGKV1S7	IGKV1S7*0					ΙS																							
IGKV1S8	IGKV1S8*0	Q	F	ΤL	. т	ΙN	G	V C	ζC	D	D A	A A	т	Y	Y (Q	С	т	ΥS	s	s٦	r <mark>G</mark>							
IGKV1S9	IGKV1S9*0								-																				
IGKV1S10	IGKV1S10*															-													
IGKV1S11	IGKV1S11*								-								_												
IGKV1S12	IGKV1S12*																							•	• •		• •	• •	
IGKV1S13	IGKV/1513*		F '	тι	т	T S	G	Δ (П	ע ח	Δ	т	Y	Y (- Δ	G	Y	KN	Y	SN	חו	П						1

Murine and human antibody repertoires are quite similar – the rabbit repertoire is different:

Vκ**-**Domains

- Rabbit kappa light chains contain an additional Cys in position L98, which can form a disulfide bond with a Cys in C_L
- Chothia canonical rules do not recognize most rabbit CDR L1s, although there is no reason why they should not assume the conformation appropriate to their length
- There is less length variability in CDR-L1 of rabbit $V\kappa$ domains than in human and murine kappa domains
- CDR L3 in rabbit V κ lack Gln L108 (L90) and *cis*-Pro L136 (L?), which in human and murine V κ domains produce the typical Ω -loop conformation. This produces a lambda-like CDR-L3 which might increase the flexibility of the V_L/V_H interface.

CDR 1 in murine/human antibodies

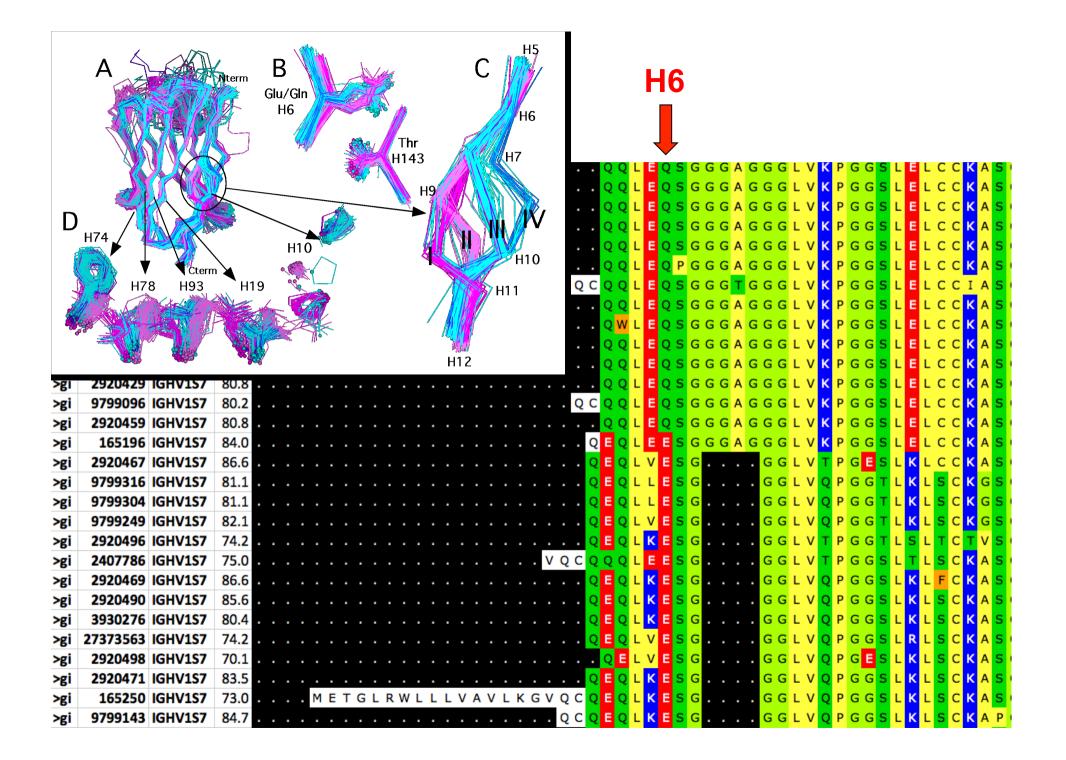


Murine and human antibody repertoires are quite similar – the rabbit repertoire is different:

Vκ**-**Domains

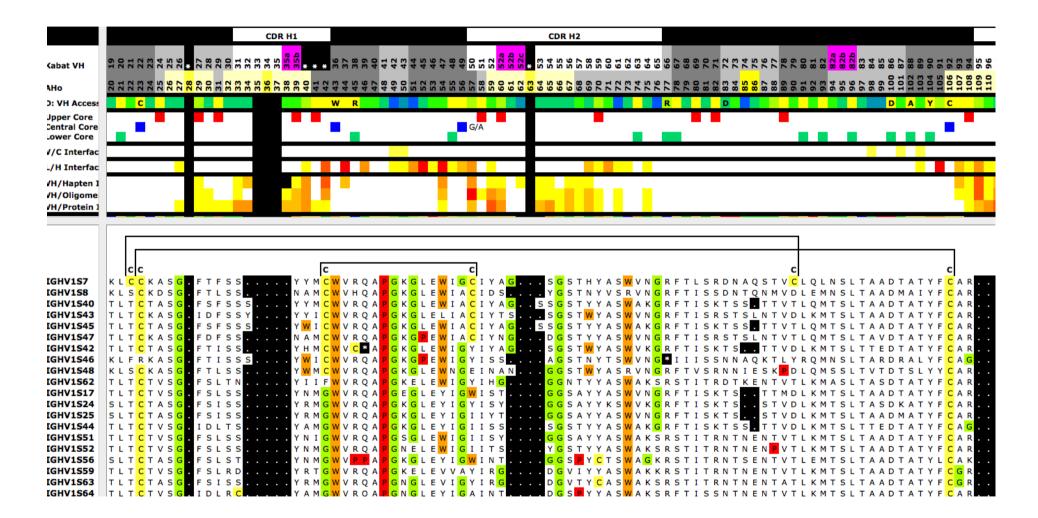
- Rabbit kappa light chains contain an additional Cys in position L98, which can form a disulfide bond with a Cys in C_L
- Chothia canonical rules do not recognize most rabbit CDR L1s, although there is no reason why they should not assume the conformation appropriate to their length
- There is less length variability in CDR-L1 of rabbit $V\kappa$ domains than in human and murine kappa domains
- CDR L3 in rabbit V_K lack Gln L108 (L90) and *cis*-Pro L136 (L?), which in human and murine V_K domains produce the typical Ω-loop conformation. This produces a lambda-like CDR-L3 which might increase the flexibility of the V_L/V_H interface.

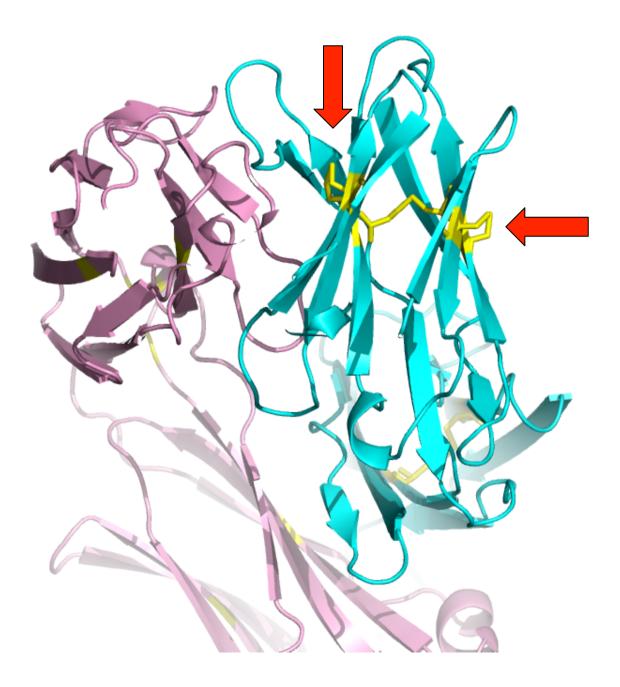
CDR L3 in murine/human light chains

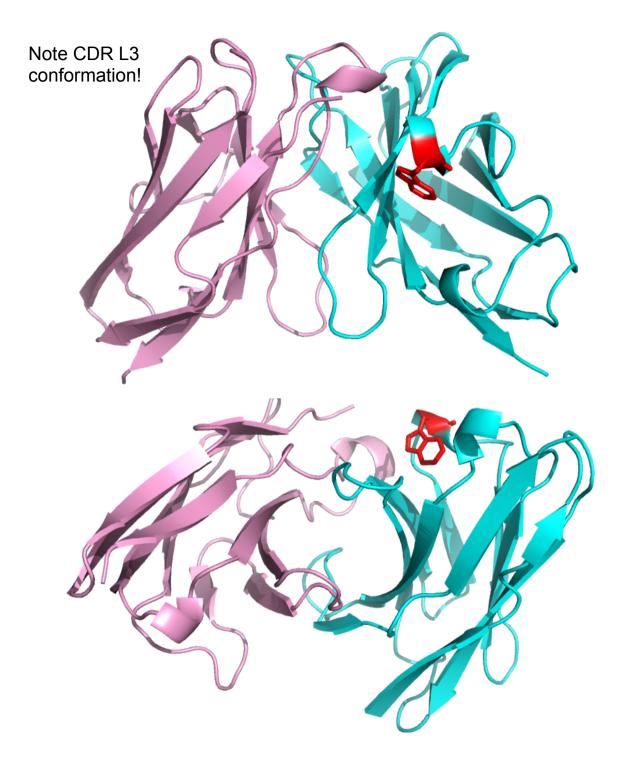


26 aa

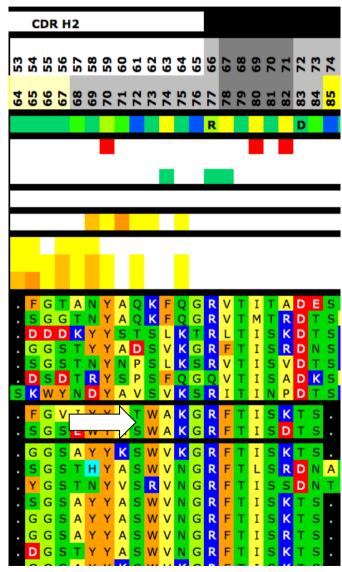
2


Segment length (residues 102-144):

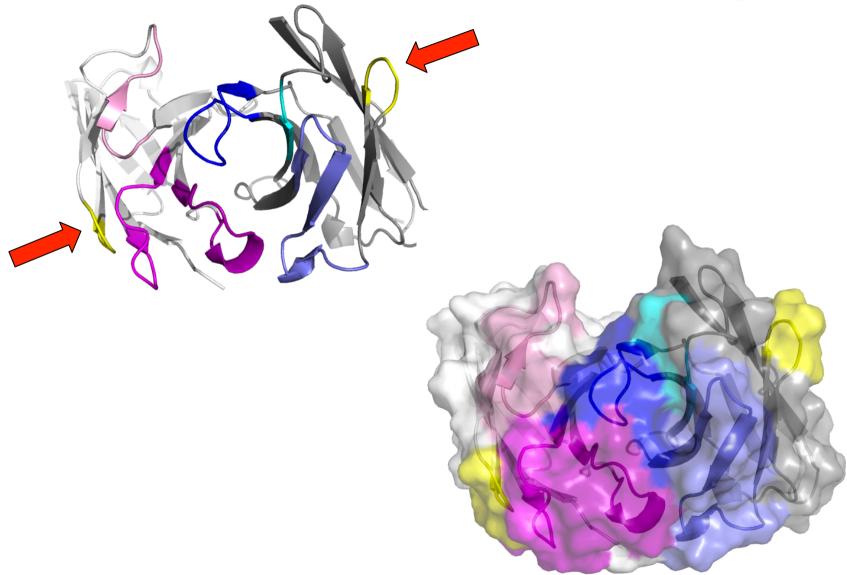

- A'-strand (N-terminus) is frequently shortened by one residue
- Upper core residue H2 is hydrophilic
- Some V_H domains have a flexible insertion (4 or 5 residues) in the kink between strands A' and A''.
- These V_H domains have additional Cys residues in positions H22 (H21) and H90 (H79) that can form a disulfide bond connecting strand B to strand F.
- Others have additional Cys in positions H42 (H?) and H57 (H50), allowing a disulfide bond that connects strands C and D.
- Some combine both additional disulfide bonds
- Rabbit V_H domains have a highly conserved additional Trp at the base of CDR H2
- Rabbit V_H domains show length variability in the outer loop


- A'-strand (N-terminus) is frequently shortened by one residue
- Upper core residue H2 is hydrophilic
- Some V_H domains have a flexible insertion (4 or 5 residues) in the kink between strands A' and A''.
- These V_H domains have additional Cys residues in positions H22 (H21) and H90 (H79) that can form a disulfide bond connecting strand B to strand F.
- Others have additional Cys in positions H42 (H?) and H57 (H50), allowing a disulfide bond that connects strands C and D.
- Some combine both additional disulfide bonds
- Rabbit V_H domains have a highly conserved additional Trp at the base of CDR H2
- Rabbit V_H domains show length variability in the outer loop

Additional S-S bridges in V_H



- The A'-strand (N-terminus) is frequently shortened by one residue
- Upper core residue H2 is hydrophilic
- Some V_H domains have a flexible insertion (4 or 5 residues) in the kink between strands A' and A''. These V_H domains have additional Cys residues in positions H22 and H90 that can form a disulfide bond connecting strand B to strand F.
- Others have additional Cys in positions H42 and H57, allowing a disulfide bond that connects strands C and D.
- Some combine both additional disulfide bonds
- Rabbit V_H domains have a highly conserved additional Trp at the base of CDR H2
- Rabbit V_H domains show length variability in the outer loop



- The A'-strand (N-terminus) is frequently shortened by one residue
- Upper core residue H2 is hydrophilic
- Some V_H domains have a flexible insertion (4 or 5 residues) in the kink between strands A' and A''. These V_H domains have additional Cys residues in positions H22 and H90 that can form a disulfide bond connecting strand B to strand F.
- Others have additional Cys in positions H42 and H57, allowing a disulfide bond that connects strands C and D.
- Some combine both additional disulfide bonds
- Rabbit V_H domains have a highly conserved additional Trp at the base of CDR H2
- Rabbit V_H domains show length variability in the outer loop

Why did those CDR Grafts fail?

Go to Graft Designer

